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Abstract

We present the first developmental computational model
of metaphor comprehension, which seeks to relate the
emergence of a distinction between literal and non-literal
similarity in young children to the development of
semantic representations. The model gradually learns to
distinguish literal from metaphorical semantic
juxtapositions as it acquires more knowledge about the
vehicle domain. In accordance with Keil (1986), the
separation of literal from metaphorical comparisons is
found to depend on the maturity of the vehicle concept
stored within the network. The model generates a
number of explicit novel predictions.

Introduction
Despite the highly imaginative and figurative way in
which children often describe the world, somewhat
surprisingly it has been claimed that children are unable
to understand figurative or metaphorical speech until
they are quite old (Piaget, 1962; see Gibbs, 1994, for a
complete review of this position).  A likely explanation
of this disparity is that adult usage of figurative devices
such as metaphor involves several skill s. For metaphor,
these may include the perception of similarity and of
anomaly in comprehending metaphors, the invention of
similarities in generating metaphors, an understanding
of the role of context in constraining possible meanings,
an understanding of speaker intentions, and a
metalinguistic abili ty to justify metaphor use based on
specific cross-domain similarities (see e.g., Dowker,
1999). Moreover, it is possible that these skil ls have
different developmental trajectories. Thus Dowker
(1999) argues that age variations in similarity
recognition and invention may be due to limited domain
knowledge which serve to restrict the types of similarity
employed by young children to mainly perceptual
information. On the other hand, the temporary reduction
found in the prevalence of metaphor in the language of

children around the age of 6 to 7 (Gardner, Winner,
Becchoffer, & Wolf, 1978; Winner, 1988) may be due
to age variations in recognition of anomaly.

The idea that conceptual knowledge constrains the
abili ty to use language figuratively is supported by
evidence that metaphor usage in children is more
prevalent in domains with which they are more famili ar
(Gottfried, 1997). Indeed Keil (1986) argued that
metaphor usage closely shadows the development of
conceptual categories. Similar arguments have been
made in the related field of analogical reasoning, where
it was also initially maintained that the relevant skil ls
appear late in childhood (Piaget, 1962). However, when
analogical reasoning was tested in more familiar
domains, skills were found at a much earlier age. This
implies that limitations in analogical reasoning arise
from differences in the knowledge available to children
as a basis for exercising this skill (Goswami, in press).

How, then, are we to interpret the apparent presence
of metaphor in young children, for example, when a
child aged 3 years and 5 months refers to a green carpet
as ‘grass’ (Bill ow, 1981)? Putting aside the possibili ty
of renaming in symbolic play (which need not involve
any similarity between label and assigned referent), and
the possibili ty that this is a case of over-extension
(which can be ruled out by checking that the child
knows the actual name for a carpet; see Gardner et al.,
1978), the juxtaposition would qualify as metaphoric
only under the following conditions: the child had not
only spotted the similarity between the carpet and grass,
but was also aware that carpet and grass fall into
separate categories, so that the similarity between them
was understood to be non-literal. Several authors have
suggested that fuzziness in categorization could explain
children’s early use of apparently figurative language
(Hakes, 1982; Marschark & Nall , 1985). If a child’s
conceptual knowledge has not formed into neat clusters,
then there will be some overlap between categories. A



sentence that appears figurative to adults may be
interpreted as literal by the child.

Evidence to support this position can be found in a
study by Vosniadou and Ortony (1983). In their
investigations of the emergence of the distinction
between literal, metaphorical, and anomalous
comparisons, these authors found evidence that,
although 3-year-olds could produce metaphorical
completions to target sentences, they were unable to
reliably identify that the concepts juxtaposed in these
sentences fell into separate categories. However, by
four years of age, children who produced metaphors
also showed an understanding that metaphorical
statements involved concepts from different
conventional categories. Both the 3- and 4-year-olds
were able to identify anomalous from literal and
metaphorical comparisons (see also Pearson, 1990).
Vosniadou and Ortony interpreted these data as
suggesting that children start with an undifferentiated
notion of similarity, which at about the age of four
becomes differentiated into literal and non-literal
similarity. They suggested that the latter type forms the
basis of metaphorical language comprehension.

In this paper, we describe the first computational
model explaining the emergence of the distinction
between literal and metaphorical similarity, based on an
existing connectionist model of simple metaphor
comprehension (Thomas & Mareschal, 2001). The
importance of this model is that it directly relates the
development of metaphor comprehension to the
development of semantic representations. The structure
of this paper is as follows. We begin by briefly
reviewing connectionist approaches to metaphor
comprehension. Second, we describe the main tenets of
the Metaphor by Pattern Completion (MPC) model on
which the developmental account is based. Third, we
chart the development of category-specific
representations that support metaphor comprehension
and the distinction between literal and figurative
statements within the MPC model. Finally, we discuss
implications for the order of acquisition of such
distinctions by young children.

Connectionist models of metaphor processing
First of all , it is important to point out that, although
previous computational models have been proposed for
the comprehension of metaphor, all of these models
have related to the adult state, and none have contained
a developmental component.

Previous models of metaphor comprehension have
exploited the soft multiple constraint satisfaction
abiliti es of connectionist networks to capture the
interactions of conceptual domains when they are
juxtaposed in comparisons. One class of models has
focused on the potential of microfeature or vector
representations of concepts to capture subtle
interactions between knowledge bases (e.g., Chandler,
1991; Sun, 1995; Thomas & Mareschal, 2001). A

second class of models has focused on structural
mapping accounts of analogy formation, whereby target
and vehicle domains are compared via the alignment of
their relational structure, as well as evaluation of shared
attributes (e.g., Holyoak & Thagard, 1989; Hummel &
Holyoak, 1997). Why have computational models of
metaphor comprehension been silent on developmental
phenomena? The answer is that both classes of model
have tended to include extensively pre-structured,
domain-specific representations, which prevent them
from exploring how representations (and their
comparison) may emerge as a function of development.

In the present work, we will focus only on attribute
mapping, which is readily captured by microfeature
models, and put to one side problems of structural
alignment. Although this limits the scope of the
metaphors to which the model can be applied, it
nevertheless makes the first initial steps towards
exploring the developmental dimension of metaphor
processing, and specifically, to investigating the ways
in which metaphor comprehension can be linked to the
development of semantic representations.

The MPC model
A full description of the MPC model can be found in
Thomas and Mareschal (2001), along with an
evaluation of its main assumptions. Here we provide a
brief outline. In broad terms, the model suggests that,
when presented with a metaphor such as Richard is a
lion, the listener indeed attempts to fit the concept
Richard into the category of lion; in so doing, an
outcome of the categorization process is to alter the
representation of Richard to make him more consistent
with the features of a lion.

More specifically, metaphor comprehension is
construed as a two-stage process. Consistent with
Glucksberg and Keysar’s (1990) view of metaphor
comprehension as a  type of categorization process, the
first stage comprises mis-classification of a semantic
input. A metaphor <A is B>, where A is the topic and B
the vehicle, is comprehended by applying a
representation of the first term (A) to a semantic
memory network storing knowledge about the second
term (B). Categorization is evaluated via the accuracy
of reproduction of (A)’s representation in an
autoassociator network trained on exemplars of (B).
The degree of semantic distortion of (A) is a measure of
the semantic similarity of concept A to domain B
(Thomas & Mareschal, 2001).

However, the result of applying (A) to the network
storing knowledge about (B) is a representation of (A)
transformed to make it more consistent with the (B)
knowledge base. In particular, there is an interaction in
which features of (A) key into covariant structure
between features in (B). If (A) shares some features of
such covariant structures, it inherits further features by
a process of pattern completion. Such feature
inheritance depends on both terms, and provides an



implementation of Black’s (1979) well-known
interaction theory of metaphor comprehension.
However, enhancement of the features of (A) does not
complete the process. In a second stage, the degree of
meaning change of the topic is compared to the
expected level of change given the current discourse
context (Vosniadou, 1989). If the threshold is high, the
statement is taken as literal and the full change in
meaning is accepted. If it is at an intermediate level,
only enhanced feature changes are accepted as the
communicative intent of a metaphor. If the threshold is
at a low level, the sentence is rejected as anomalous.

Thomas & Mareschal (2001) evaluated the model’s
performance in comparing highly simplified domains to
ill ustrate this process. Plausible metaphorical
comparisons such as “ the apple is a ball ” were
contrasted with anomalous comparisons such as “ the
apple is a fork” . The model was able to account for a
number of empirical phenomena, including the non-
reversibili ty of comparisons and the predictabili ty of
interactions between topic and vehicle.

However, the degree to which metaphorical semantic
transformations will occur depends not only on the
similarity of (A) and (B), but also on the amount and
quali ty of the knowledge stored in knowledge base B.
In this way, metaphor comprehension can be linked to
semantic development.

In the next section, we take a single vehicle
knowledge domain and trace the development of
metaphorical comprehension as the knowledge in the
base network increases with learning. For simplicity,
the sample knowledge base comprises information
about types of ball, and performance is compared on
literal comparisons (“ the football i s a ball ” ) against
metaphorical comparisons (“ the pumpkin is a ball ” ) and
anomalous comparisons (“ the kite is a ball ” ).

The developmental model is intended to be
ill ustrative: we make no claims about children’s
specific abiliti es to compare objects to balls at specific
ages. Rather, we are interested in evaluating the effect
of emerging semantic structure on the delineation of
different types of similarity, and the consequent
qualitative changes in the nature of metaphor
comprehension during development.

Modeling the development of metaphor
comprehension

Autoassociation is at the heart of the MPC mechanism.
In the original model (Thomas & Mareschal, 2001),
multiple parallel knowledge bases were available for
different comparisons. However, in the present article
and in the interest of clarity, we discuss only results
obtained with a single autoassociator network.

A network with 16 input units, 16 output units, and
10 hidden units was trained to autoassociate a set of
input patterns that defined the semantic knowledge of
the vehicle domain. The number of hidden units was

chosen to allow good training performance but also to
encourage generalization. All units in the network used
sigmoid activation functions.

The autoassociation network was trained for 500
presentations of the complete training set. At each
epoch the training set was presented in a different
random order. The learning rate and momentum were
set to 0.05 and 0.0 respectively. Metaphor
comprehension performance was evaluated at 0, 1, 2, 3,
4, 5, 7, 10, 15, 20, 30, 45, 70, 110, 200, and 500 epochs
of training. The results reflect an average over n=12
replications with different initial random seeds.

The training set was constructed around 8 prototypes
of various balls, constituting the ‘ball’ knowledge base.
Prototypes were defined over 5 clusters of features:
color (red, green brown, white), shape (round,
irregular), consistency (soft, hard), size (small, large),
weight (heavy, light), and associated action (thrown,
kicked, hit, eaten), for a total of 16 semantic features.
The last feature was included to permit anomalous and
metaphorical comparisons. We assume that all concepts
can be described by the same large feature set, and that
the organization of knowledge into different categories
happens within the hidden unit representations through
learning. Feature values ranged between 0 and 1, so that
the higher the activation, the more prominent the
feature. Opposite feature values (e.g., small & large)
were encoded on separate inputs to allow the coding of
an absence of knowledge. From each prototype, 10
exemplars were generated by adding Gaussian noise
(with standard deviation of 0.35) to the prototype
pattern. The final training set thus constituted 8x10 = 80
exemplars of balls. The training prototypes are listed in
Table 1, upper section.

Assessing different semantic comparisons
A comparison is evaluated by applying a novel input to
the network and seeing how well it is reproduced on the
output units. The more accurate the reproduction, the
greater the similarity of the novel item to the knowledge
stored within the network. Nine novel comparisons
were created using the semantic features described
above. These fell i nto three classes: (1) literal
comparisons, (2) metaphorical comparisons, and (3)
anomalous comparisons.

Literal comparisons involved novel exemplars of
balls near the prototypical values. Metaphorical
comparisons involved inputs that shared some
properties with balls, but differed on other properties.
Anomalous comparisons involved inputs constructed so
that the inputs shared few features with balls in general.

The input vectors for the different classes of
comparisons were constructed by comparing the novel
input with the ball prototype vectors used to generate
the knowledge training set. This was achieved by
computing the angle between the two vectors in
semantic space and selecting the closest match. For the
literal comparisons, the angle had to be to be less than



10 degrees, for the metaphorical comparisons, it had to
be between 40 and 45 degrees, and for the anomalous
comparisons, it had to be between 60 and 66 degrees.
(An angle of 90 degrees would constitute a novel
pattern orthogonal to, or completely different from, all
the prototypes used to generate the exemplars in the
knowledge base.) Novel comparisons are shown in
Table 1, lower section. A perfect reproduction of the
input at the output indicates a similarity of 1.0 (self-
similarity). The transformation similarity (S) of each
novel comparison to the ball knowledge base was
defined as:

S = 1 - RMS Error (1)

An RMS error of 0 would give a similarity of S=1. High
similarity implies low semantic distortion (as expected
in a literal comparison), moderate similarity implies
moderate semantic distortion (as expected in a
metaphorical comparison), and low similarity implies
high semantic distortion (as expected in an anomalous
comparison). The similarity of novel comparisons was
evaluated at different points during training. Principal
Component Analyses of the hidden unit activations
were also carried out during training to chart the
development of the internal representations.

Results
Figure 1 shows S for each of the three types of
comparison as learning progresses. Initially, there is
littl e difference between literal, metaphorical and
anomalous comparisons. However, even very early in
learning a marked separation of the anomalous
comparisons from the literal and metaphorical
comparisons appears. The metaphorical and literal

comparisons continue to be treated in a similar fashion
for a further 5 presentations of the training set. At this
point, metaphorical and literal similarities diverge. In
the remaining epochs of training, the similarities from
the three different types of comparisons separate into
distinct bands. After an initial period of treating literal
and metaphorical statements identically, the network
has learnt to separate them out.

The process that underlies the development of this
distinction can be better understood by examining the
developing structure of the network knowledge base
(Fig.2). Principal Components Analysis of the hidden
unit activation space shows how the internal
representations pull apart the different types of ball
during training, according to their input characteristics.

In general, anomalous patterns fall i n-between
clusters, while metaphorical comparisons lie at the edge
of clusters, and literal comparisons lie within the
clusters. Once the clusters are sufficiently delineated
from each other, an item that bears a metaphorical
relation to a given category is distinguished from
members of that category.

Novel inputs to the network are transformed in an
attempt to classify them. Within the model, the
transformed semantic representation corresponds to the
meaning enhancement that is the outcome the
comparison. Focusing on the metaphorical comparisons
alone, examination of this enhancement yields three
distinct phases during training. First, there is poor
pattern completion, linked to an immature vehicle
knowledge base. Next, with the initial emergence of
semantic structure, metaphorical comparisons such as
“the pumpkin is a ball ” and “ the apple is a ball ” lead to
enhancement of some of the target’s features. For
example, ‘pumpkins’ and ‘apples’ are not associated

Table 1: Upper section: Prototypical patterns forming the ball knowledge base. Adding noise to the prototypes
creates training sets. Lower section: Novel patterns used in literal, metaphorical, and anomalous comparisons.
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Football(white) .00 .00 .00 .90 .00 .20 .00 .95 .90 .00 .00 .80 .00 .90 .90 .00
Football(brown) .00 .00 .90 .00 .00 .20 .00 .95 .90 .00 .00 .80 .00 .90 .90 .00
Cricket ball .90 .00 .00 .00 .00 .98 .97 .00 .90 .00 .00 .98 .80 .00 .80 .00
Ping-Pong ball .00 .00 .00 .95 .00 .10 .98 .00 .98 .00 .00 .98 .95 .00 .00 .95
Tennis ball .00 90 .00 .00 .00 .80 .98 .00 .90 .00 .80 .00 .80 .00 .00 .85
Squash ball (red) .80 .00 .00 .00 .00 .50 .98 .00 .93 .00 .85 .00 .95 .00 .00 .90
Squash ball (green) .00 .90 .00 .00 .00 .50 .98 .00 .93 .00 .85 .00 .95 .00 .00 .90
Beach ball .98 .00 .00 .00 .00 .90 .90 .90 .90 .00 .98 .00 .00 .98 .00 .90

Novel comparisons
Literal:
   Football (white) .00 .00 .00 .85 .00 .20 .00 .98 .80 .00 .10 .80 .00 .90 .80 .00
   Beach ball .90 .00 .00 .00 .00 .80 .70 .90 .70 .00 .90 .00 .00 1.0 .00 .80
   Ping-Pong ball .00 .00 .00 .99 .00 .20 .99 .00 .95 .00 .00 .90 .95 .00 .00 .97
Metaphorical:
   Apple (red) .80 .00 .00 .00 .95 .05 .00 .00 .75 .15 .70 .20 .70 .00 .00 .50
   Pumpkin .20 .00 .70 .00 .80 .00 .00 .00 .80 .50 .80 .60 .00 .80 .90 .00
   Apple (green) .00 .95 .00 .00 .95 .05 .00 .00 .75 .15 .70 .20 .70 .00 .00 .50
Anomalous:
   Kite .99 .00 .00 .00 .00 .05 .00 .00 .00 .99 .00 .98 .00 .95 .20 .80
   Spaghetti .00 .00 .80 .20 .97 .00 .00 .00 .00 .70 .80 .20 .00 .70 .00 .60
   Toast .00 .00 .80 .10 .80 .00 .00 .00 .00 .80 .80 .00 .80 .00 .00 .90



with being ‘ thrown’ , ‘hit’ , or ‘kicked’ . The effect of
each metaphor is to transfer such features from vehicle
to topic. However, initially enhancement occurs
according to an early, prototypical notion of ball , a
notion that averages over all exemplars of balls, and
corresponds to what one might call the basic level of
the category. On average, most balls are ‘hit’ rather
than ‘kicked’ or ‘ thrown’ . During this second phase, the
‘hit’ enhancement is inherited by all round, firm targets
such as ‘apple’ and ‘pumpkin’ . However, in the third
phase, as further training produces delineation of the
knowledge base, transfer now occurs according to the
type of ball most similar to the particular target,
according to what one might call the subordinate level
of the vehicle category. Table 2 shows that at 4 epochs
‘apple’ and ‘pumpkin’ have similar activation levels for
the action features, loading maximally on ‘hit’ , whereas
at 500 epochs, ‘apple’ and ‘pumpkin’ now load on
different features. Apples are now viewed as likely to
be hit, and pumpkins to be kicked, according to their
differing sizes. The model thus generates an explicit
and testable prediction: attribute inheritance will move
from basic to subordinate level during development.

Moreover, since there is variabili ty within the internal
structure of categories, not all lit eral comparisons will
be equivalent. The more atypical the literal comparison,
the more it will resemble a metaphor. This leads to a
second explicit and testable prediction: the recognition
of atypical literal statements as distinct from

Figure 1. Similarity (S) of novel comparisons to the ball
knowledge base during training. Three examples from each
comparison type are plotted.
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Table 2: Attribute transfer from basic (4 epochs) and
subordinate (500 epochs) category levels. Scores show
the transformed feature values for action features
Thrown (T), Hit (H) and Kicked (K) in the topic.

Comparison <X is a Ball>
Red Apple Pumpkin

T H K T H K
4 epochs .59 .75 .37 .50 .60 .30
500 epochs .17 .85 .17 .18 .03 .48

c) 500 epochs

                        KEY
       - Prototype (e.g. Beach Ball ) M1  - Metaphorical comparison

bb   - Exemplar in training set A1  - Anomalous comparison

L1 - Literal comparison

Figure 2. First two components of the hidden unit
activations for training and test patterns of a
representative network across training.

b) 15 epochs

a) 4 epochs



metaphorical statements should lag behind the
recognition of typical literal statements as distinct from
metaphorical statements during development.

Discussion
A common characterization of conceptual development
views young children’s knowledge as being assimilated
into broad groups; as children develop, they make finer
and finer distinctions until there are many different
categories (e.g., Carey, 1985; Keil , 1986). Because the
comprehension of metaphor requires the deliberate
deconstruction of categories, the way knowledge is
categorized will have a large effect on metaphor
comprehension. The model we have described above
provides a concrete implementation of Marschark and
Nall ’s (1985) account of metaphor use in young
children. Literal, metaphorical, and anomalous
comparisons fall onto a conceptual space undergoing
refinement. The process of refinement leads to the
emergence of a notion of non-literal similarity.

Clearly this simple model does not capture all aspects
of the development of metaphor comprehension. The
metaphors we have dealt with are predominantly
perceptual. Importantly, the model fails to capture the
emerging use of structural information in children’s
metaphors (Gentner, 1988). However, existing
computational models have not addressed develop-
mental phenomena at all , let alone the relational shift.
The next step for the MPC model will be an extension
to structured representations, possibly via the inclusion
of synchrony binding (see Hummel & Holyoak, 1997),
while retaining the mechanism of pattern completion as
a powerful tool for explaining the transfer of attributes
in metaphorical comparisons. Despite its simplicity, the
importance of the current model is its demonstration
that the emergence of non-literal similarity can be
driven by emerging semantic structure, and the explicit
testable hypotheses it generates to progress our
understanding of the development of metaphor
comprehension in young children.
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