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Computational Modeling in
Developmental Psychology

Denis Mareschal and Michael S. C. Thomas

Abstract—This manuscript surveys computational modeling
efforts by researchers in developmental psychology. Develop-
mental psychology is ready to blossom into a modern science that
focuses on causal mechanistic explanations of development rather
than just describing and classifying behaviors. Computational
modeling is the key to this process. However, to be effective,
models must not only mimic observed data. They must also be
transparent, grounded, and plausible to be accepted by the devel-
opmental psychology community. Connectionist model provide
one such example. Many developmental features of typical and
atypical perception, cognition, and language have been modeled
using connectionist methods. Successful models are closely tied
to the details of existing empirical studies and make concrete
testable predictions. The success of such a project relies on the
close collaboration of computational scientists with empirical
psychologists.

Index Terms—Children, cognitive modeling, connectionism, de-
velopmental psychology, infancy.

I. INTRODUCTION

THE computational study of development can have a range
of purposes. One purpose is to ask whether computers can

develop mental abilities from experience; that is, are the com-
putational properties implemented in the computer sufficient to
acquire the target behavior given some series of learning events.
In fact, almost 50 years ago, Simon and Newell had already
argued that computational systems could acquire and express
intelligent behavior. They wrote that “Intuition, insight, and
learning are no longer exclusive possessions of humans: any
large high-speed computer can be programmed to exhibit them
also. (…) The simplest way [we] can summarize the situation is
to say that there are now in the world machines that can think,
that learn, and that create” [92, pp. 6–8]. A second purpose is
to use the computer as a tool for understanding the child. In this
case, we ask whether a computer exhibiting intelligent behavior
is acquiring the ability in the same way as the child. In this ca-
pacity, computers can help elucidate the principles by which de-
velopmental change occurs in children.

Both approaches have their value and, in fact, can benefit
immensely from the cross-fertilization of ideas arising from
each domain. Machine-learning approaches to problem solving
can generate new hypotheses for how humans achieve the
same feats. The study of human development can offer novel
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engineering solutions to the acquisition of complex abilities.
Given this potential for cross-fertilization, there is value in
bringing both kinds of effort together in the same community.
With this goal in mind, in this paper, we will focus on the latter
of the two roles of computational models of development. We
do this because it reflects the approach that we use as research
psychologists.

For much of its history, developmental psychology has
charted what infants and children could and could not do at
any given age. The origins of this approach lie deep within
the Piagetian tradition of identifying and attempting to draw
inferences based on the interesting errors in reasoning that
children sometimes make [23], [63], [64]. However, as the
19th century physical chemist Lord Rutherford once said, “all
science is either physics or stamp collecting” (cited in [4]). A
mature modern science is one that strives to understand the
causal mechanisms that explain the relationship between a
series of observed phenomena. Thus, scientific developmental
psychology must elucidate the causal mechanisms that un-
derpin the behaviors we see; not just the moment-by-moment
observation of children, but also the mechanisms that explain
the gradual developmental change that is observed as infants
and children grow older [50].

Most modern sciences have progressed from a descriptive to a
causal-mechanistic stage. This has been true in the physical sci-
ences, the biological sciences as well as economics and other so-
cial sciences. Developmental psychology is now mature enough
(in terms of having enough data) to begin the transition into a
causal mechanistic science. The principal historical obstacle to
this transition has been the lack of an appropriate tool to think
about information-processing mechanisms and the processes of
developmental change. The introduction into the study of cogni-
tive psychology of computational modeling methods in the mid
1970s and 1980s (see [7]), swiftly followed by the arrival of
neural network connectionist modeling [81], has provided just
such a tool.

Implemented computational models bring many benefits to
the study of psychology [42]. Their key contribution is that they
force the researcher to be explicit about the information-pro-
cessing mechanisms that underlie performance on a task. As
such, they test the internal consistency of any proposed infor-
mation-processing theory and allow the researcher to explore
ranges of behaviors that may be impossible or unethical to
explore empirically. They can also be used to predict perfor-
mance under extreme limiting conditions, and to explore the
complex interactions of the multiple variables that may impact
on performance.

Computer models complement experimental data gathering
by placing constraints on the direction of future empirical inves-
tigations. First, developing a computer model forces the user to
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specify precisely what is meant by the terms in his or her under-
lying theory. Terms such as representations, symbols, and vari-
ables must have an exact definition to be implemented within a
computer model. The degree of precision required to construct
a working computer model avoids the possibility of arguments
arising from the misunderstanding of imprecise verbal theories.

Second, building a model that implements a theory provides
a means of testing the internal self-consistency of the theory.
A theory that is in any way inconsistent or incomplete will be-
come immediately obvious when one tries to implement it as a
computer programmed: the inconsistencies will lead to conflict
situations in which the computer programmed will not be able
to function. Such failures point to a need to reassess the imple-
mentation or reevaluate the theory.

An implication of these two points is that the model can be
used to work out unexpected implications of a complex theory.
Because the world is highly complex with a multitude of infor-
mation sources that constantly interact, even a simple process
theory can lead to unforeseen behaviors. Here again, the model
provides a tool for teasing apart the nature of these interactions
and corroborating or falsifying the theory.

Perhaps the main contribution made by computational
models of cognitive development is to provide an account of
the representations that underlie performance on a task, while
also incorporating a mechanism for representational change
(see [45], for an extensive discussion of this issue). One of
the greatest unanswered questions of cognitive development
is the nature of the transition mechanisms that can account
for how one level of performance is transformed into the next
level of performance, often of a more complex or abstract
nature, at a later age. How can learning produce increases in the
sophistication of reasoning? This is a difficult question because
it involves observing how representations evolve over time
and tracking the intricate interactions between the developing
components of a complex cognitive system and its subjective
environment. Building a model and observing how it evolves
over time provides a tangible means of achieving this end.
Indeed, models that do not address transitions but only explain
behavior at discrete ages are not models of development, even
if the relevant data that they explain involves children.

There are of course a number of pitfalls that confront any
modeler. The first is making the right choice of which variables
to exclude and which variables to focus on in any particular
model. A model is, by definition, an approximation of the real
system designed quite intentionally to simplify the subject of
study. What the right approximations are depends on what the
question is, who the target audience is, and what level of under-
standing has already been reached regarding this field. In his
extremely lucid chapter “Artificial Intelligence Meets Natural
Stupidity,” McDermot [52] identifies several further pitfalls of
using AI systems as models of human cognition. The first is
to attach meaningful labels to components of a model (e.g.,
“understanding module,” “reasoning module,” “attachment
module,” “semantics module,” “syntax module”), and then to
assume that the system provides some kind of explanation of
behavior simply by virtue of using psychological terminology.
Such an explanation is illusionary. To show this, McDermot
suggests relabeling the components with more abstract labels

(e.g., “Z3XL module” and “A23BP module”) to see if the
model still provides an explanatory framework for the target
behavior.

The second (and unfortunately all too common) pitfall is to
describe and draw inferences from unimplemented versions of
the model. While it may seem obvious how a given model will
perform, until the simulations are actually run, the model has no
more value than a standard verbal psychological theory. If the
outcome of simulations could always be anticipated in advance,
there would be no virtue in modeling. In fact, some of the most
creative scientific discoveries have come from unexpected re-
sults to what seemed to be blindingly obvious experiments.

For developmental psychologists, a model is fundamentally a
tool for helping us to reason about the processes that underlie a
given natural phenomenon. To be of value to the developmental
community, a number of constraints must be satisfied. The first
is transparency. A model must be understandable to those who
are going to use it in their everyday research activities. This
does not mean that its dynamic properties need to be immedi-
ately graspable. However, the processes and mechanisms that
underlie the system’s behavior, their mathematical embodiment
and their computational implementation must all be clear.1 If the
end user cannot understand the basic processes underlying the
developmental model, then it is of little value, even if it mimics
completely the unfolding behaviors observed in a child.

Second, the model must be grounded. It must make substan-
tial contact with the rich data already available in all areas of
cognitive development. A real danger of interdisciplinary re-
search (such as the computational modeling of cognitive devel-
opment) is that expertise in one side of a multifaceted project is
underrepresented. Researchers then rely on secondary sources
to guide their modeling efforts. These secondary sources are
often either out of date, of limited scope, or simple approxi-
mations of what the real phenomena look like. Consequently,
experts in the field do not view the model as making any real
theoretical contribution. This is a problem that we have encoun-
tered in all aspects of computational modeling. Examples range
from psychologists alluding to mathematical concepts such as
“Strange Attractors” to explain development without any real
understanding of what a Strange Attractor is and what its formal
characteristics are [78], [80]. Conversely, computational scien-
tists may develop models of psychological phenomena such as
“Dyslexia” or “Autism” without a full understanding of the con-
troversy that surrounds the identification and diagnosis of these
disorders and the richness of the range of behaviors that exists
in individuals labeled as autistic or dyslexic (e.g., [27]).

Third, the model must be plausible. The mechanisms and pro-
cesses that it proposes must be consistent with those known or
believed to exist in other related domains. Putting aside the issue
of what the appropriate level of description is for a particular
phenomenon (i.e., is it best described at the cognitive level or the
neural level of processing?), there is a temptation as engineers
and computer scientists to posit mechanisms that will work, but
that have no cross-reference to other models in similar domains.

1Such a proposition is not unique to models of psychological processes.
For example, models of highly complex systems such as weather and climate
systems are based on fairly straightforward assumptions about physics, and
yet these “simple” models help explain otherwise unpredictable climate and
weather conditions.
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As a result, the model is theoretically and empirically isolated
and it becomes difficult to see how the model could generalize to
any other domain. In terms of levels of description, while empir-
ical phenomena can be independently studied at different levels,
the levels are not themselves independent. Thus, a theory at the
cognitive level cannot include assumptions or mechanisms that
cannot be delivered by processes at the neural level; assumptions
about innate starting points for cognitive development cannot
be inconsistent with what is known about genetic constraints on
brain development [45].

Computational models of cognitive development typically
permit researchers to explore how some target behavior can be
acquired via exposure to a set of experiences. From a practical
point of view, this exercise can be construed as just another
kind of machine-learning problem, and is therefore subject to
the same kind of design choices. These include choosing the
type of training experience, the target function to be learned,
a representation for the target function, and an algorithm for
learning this function from the training examples [55]. The
particular computational formulism (be it an artificial neural
network, a production system, or a decision tree) along with
the input and output representational formats and free internal
parameters, determine the representational states or space of
hypotheses that can be adopted by the system following its
exposure to the training set. From this viewpoint, learning
involves searching the hypothesis space to find the hypothesis
that best fits the training examples and the prior constraints
or knowledge. Each type of system also includes an inductive
bias with which it extends knowledge acquired from training
examples to classify novel inputs. For instance, the inductive
bias for artificial neural networks is that implemented functions
are smooth; for decision tree algorithms (such as ID3), the
inductive bias is that high information-gain attributes should
be positioned close to the root and shorter trees should be
preferred over larger trees [55].

In a cognitive computational model, psychological empirical
data are used wherever possible to constrain choices about rep-
resentations and training sets. Psychological approaches with a
nativist leaning will produce models with additional constraints
on their architectures, activation dynamics, input/output repre-
sentations, or learning algorithms, so that fewer internal hypoth-
esis states are available. Training will serve to push the system
into one of this limited set of states. For example, in the Chom-
skian theory of language acquisition, mere exposure to language
is held to “trigger” the selection of the correct subset of a Uni-
versal Grammar that is present at birth (see for example, [8]).
Models of a more empiricist bent will have fewer constraints on
the hypothesis space, so that the information in the training ex-
amples plays a stronger role in determining which hypothesis
is selected. For example, some theories of the development of
the visual system argue that when one exposures a fairly general
self-organizing learning system2 to natural visual scenes, the la-
tent statistical structure of these scenes is sufficient to generate

2A self-organizing learning system is one that when exposed to an input set,
develops a set of representations reflecting the latent similarity structure in that
input. It is driven only by its own learning algorithm, without an external error
signal. By contrast, in a supervised associative system, the training set comprises
input–output pairs and the system must learn to associate the appropriate output
pattern with each input.

many of the kinds of representational primitives observed in the
low-level visual system [21], [22].

Generalization to novel inputs is often of primary interest
in computational models of cognitive development, since chil-
dren acquire flexible behavioral patterns in response to given
domains that typically do not require the child to have experi-
enced every possible configuration of that domain. It turns out
that generalization tests are often more informative of the so-
lution that a system has reached than its performance on the
training data, as many different hypothesis states are consistent
with a given training set but these frequently diverge in how
they treat novel situations. This point will become relevant later,
when we consider developmentally disordered systems, which
may appear to have acquired the same cognitive processes with
reference to a narrow set of behaviors (equivalent to the training
set), but exposure to novel situations reveals that normal-looking
behavior has been achieved through atypical underlying repre-
sentations.

In the rest of this paper, we will illustrate these general prin-
ciples by focusing on one computational modeling approach
that has been extremely successful at producing psychologically
relevant computational models of learning and development in
infants and children. These include models of typical but also
atypical learning and development, where key boundary condi-
tions and resource limitations are found to lie at the heart of the
atypical behaviors observed in children.

II. CONNECTIONIST MODELS OF DEVELOPMENT

Many different architectures have been proposed as psycho-
logical process models of development. These include produc-
tions system models (e.g., [39], [60], and [114]); decision tree
models (e.g., [86]), neural network and connectionist models
(e.g., [19], [48], [57], and [89]), hybrid models (e.g., [17]), and
temporal-difference learning models (e.g., [105]), to name but
a few. It is well beyond the scope of this paper to review all of
these approaches. Instead, we will focus on one particular ap-
proach that has been particularly successful at modeling devel-
opment, and consequently, well received by the developmental
community. Here, we are referring to connectionist or neural
network models of cognitive development.

Connectionist networks are computer models loosely based
on the principles of neural information processing [19], [54],
[81]. In most cases, they are not intended to be neural models,
but rather cognitive information processing models that embody
general processing principles such as inhibition and excitation
within a distributed, parallel processing system. They attempt
to strike the balance between importing some of the key ideas
from the neurosciences, while maintaining sufficiently discrete
and definable components to allow questions about behavior to
be formulated in terms of a high-level cognitive computational
framework. However, in some cases, the link with neural infor-
mation processing is made more explicit (see [111]).

From a developmental perspective, connectionist networks
are ideal for modeling because they develop their own internal
representations as a result of interacting with an environment
[71]. However, these networks are not simply tabula rasa
empiricist learning machines. The representations that they
develop can be strongly determined by initial constraints (or
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boundary conditions). These constraints can take the form of
different associative learning mechanisms attuned to specific
information in the environment (e.g., temporal correlation or
spatial correlation), or they can take the form of architectural
constraints that guide the flow of information in the system.
Although connectionist modeling has its roots in associationist
learning paradigms, it has inherited the Hebbian rather than
the Hullian tradition [32]. That is, what goes on inside the box
(inside the network) is as important in determining the overall
behavior of the networks as the correlation between the inputs
(stimuli) and the outputs (responses).

Connectionist networks are made up of simple processing
units (idealized neurons) interconnected via weighted commu-
nication lines [33]. As activation flows through the network, it
is transformed by the set of connection weights between succes-
sive layers in network. Thus, learning (i.e., adapting one’s be-
havior) is accomplished by tuning the connection weights until
some stable state of behavior is obtained.3

In all cases, these networks adapt in such a way as to inter-
nalize structures in the environment. Through adaptation, the
connection weights come to encode regularities about the net-
work’s environment that are relevant to a task the network must
solve. Networks are very sensitive to the distribution statistics
of relevant features in their environment. A feedforward net-
work with a single layer of hidden units can approximate arbi-
trarily well any bounded continuous output response function,
given enough hidden units (e.g., [14]). Further details of the sim-
ilarities between connectionist network learning and statistical
learning procedures can be found elsewhere (e.g., [30], [31], and
[33]).

Psychologists think of knowledge occurring at two levels in
connectionist neural networks (see [57]). On the one hand, there
is knowledge stored in the connection strengths, an accumula-
tion of learning events. The connection strengths determine the
pattern of activation produced by an input and/or by existing
activation propagating inside the system. On the other hand,
there is knowledge corresponding to the activations themselves.
When activation is processed through the connections, it gives
rise to maintained activity, which serves as both a representation
of current inputs and a working memory for recently presented
information.

Note that many connectionist networks are very simple. They
may contain some 100 units or so. This is not to suggest that
the part of the brain solving the corresponding task only has
100 neurons. Remember that such models are frequently not in-
tended as neural models, but rather as information-processing
models of behavior. The models constitute examples of how
systems with similar computational properties to the brain can
give rise to a set of observed behaviors. Sometimes, individual
units are taken to represent pools of neurons or cell assem-
blies. According to this interpretation, the activation level of
the units corresponds to the proportion of neurons firing in the
pool (e.g., [9]). However, to preserve the cognitive interpreta-
tion of the model, activation of a unit in a network corresponds
to a conceptual state with reference to the domain being mod-
eled, rather than the spike train recorded from a single neuron

3Some connectionist modelers also change in the network topology to adapt
as part of the learning process (see [89] for a full discussion of this approach).

somewhere in the brain. This is because neural codes typically
employ distributed representations rather than localist represen-
tations. In distributed codes, the cognitively interpretable unit is
represented by a pattern of activity, not by the activity of a single
unit. Since the representations in a connectionist model of a cog-
nitive process may capture similarity relations among patterns
used in the brain and among concepts entertained by the mind
without the units representing the concepts themselves, there is
a sense in which the models exist at a level between the cogni-
tive and the neural level.4

Usually, the aim of these models is to capture normative de-
velopment, that is, the development of the normal or average
child. The successful model should pass through the observed
stages of development, simulate error types and quantities at
each stage, and achieve the adult level of performance. Data
may include both accuracy and response times. However, nor-
mative development profiles mask a great deal of variability.
Some of this occurs within the individual, whereby advances
in the sophistication of performance may initially be inconsis-
tent, with backtracking and sensitivity to context, before con-
solidation. Variability can also be found between individuals of
the same age. This is often referred to as individual differences.
Variability may exceed the “normal” range (statistically defined
as standard scores varying between 85 and 115), corresponding
to learning disabilities and giftedness, respectively. At the lower
end of the normal range, variability can also be observed stem-
ming from diagnosed developmental disorders that often have
a genetic origin, such as autism, Down syndrome, Williams
syndrome, and Attention Deficit Hyperactivity Disorder. Some
learning disabilities appear to have relatively restricted scope
with other areas of cognitive development closer to the normal
range, such as Specific Language Impairment (SLI), dyslexia,
dyspraxia, and dyscalculia.

Implemented computational models provide a framework in
which issues of variability can be explored [95], [102]. Once a
model of normal development has been established, it is pos-
sible to assess the consequences of different types of impair-
ment, thereby generating candidate explanations for the vari-
ability. As discussed above, constructing a connectionist model
involves making a set of decisions about the input and output
representations corresponding to the target cognitive domain,
the regime of training experiences, the specific architecture and
learning algorithm, and a range of free parameters. Within the
framework of the model, these are the constraints that act on
or shape the normal developmental trajectory. The normative
model employs some constraints that are determined by psycho-
logical data (e.g., what representations of word sounds, written
words, and meanings are psychologically plausible), while other
constraints (e.g., the range of possible parameter values) are set
to simulate the empirical data.

It is important to be clear about the role of the free parameters
in these models. The free parameters are not adjusted simply to
fit models to the experimental data they are supposed to explain.
Rather, the free parameters constraint the trajectory of learning.
Changes in behavior are driven by iterative, experience-depen-
dent changes to a separate set of parameters: the connection
strengths (and in some cases, the network architecture). The free

4We are grateful to an anonymous reviewer for this suggestion.
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parameters influence the way that experience alters this sepa-
rate set of parameters. Thus, fitting the training data is not gen-
erally a criterion for success in these models, while fitting the
behavioral data from the combination of the architecture and
the training process generally is. To be informative, simulations
must capture both the developmental trajectory and in the end
state performance of the system, and that end state performance
must normally extend to novel situations.

Of course, the availability of free parameters that can ac-
commodate individual differences might suggest that it is easy
to simulate any set of psychological empirical data, especially
given that connectionist networks can approximate almost any
arbitrary function with enough hidden units. There are a number
of responses to this critique. First, the fact that there exists a set
of parameters that will allow the network to approximate the re-
sponses of children on a task does not imply that this solution is
learnable by the network. For example, the system may get stuck
in a local minimum during training, a suboptimal, partial solu-
tion to the problem from which any immediate change causes
a worsening in performance before a general solution can be
found. Second, even if a response function is learnable, not all
ways of learning the problem will produce developmental pro-
files shown by the children: the power of connectionist models
is that their developmental profiles have often been found to
track those observed in children. Third, the input–output repre-
sentations and training regime often turn out to be the strongest
constraints in many models. In this case, the free parameters do
not carry much of the explanatory weight. Fourth, in practice,
a lot of productive modeling work has been carried out despite
the availability of free parameters. The import assumptions in
models have mostly turned out to be theory-driven rather than
relying on the setting of unconstrained parameters.

Given a normative model, we can ask whether there are
suboptimal settings of the free parameters that can explain the
types of behavioral profiles we see in developmental disorders.
Is there a parameter variation that could explain individual
differences, such as the level of computational resources? Is
there some property of representations of, say, spoken words
or written words that might make it hard to learn the mapping
between the two, and so capture features of developmental
dyslexia? Implemented models of developmental disorders and
individual differences offer the same drive to clarify previously
vague verbal terms. In this case, they are terms like “processing
speed” (differences in which are taken by some to explain the
general factor of intelligence in psychometric testing), “poor
representations,” and “delay” (both offered as explanations of
developmental disorders).

From a formal learning perspective, alterations to the model’s
constraints may produce a number of effects. They may change
the nature of the hypothesis space that can be reached; they
may change the nature of the search of an existing hypothesis
space; they may change the inductive bias which the system
uses to generalize to novel examples; or they may change the
set of training examples, either in the system’s autonomous
sampling of the environment or when the environment is itself
impoverished.

The utility of computational models for simulating indi-
vidual variability can best be illustrated by a brief example.
One ongoing debate in the field of development disorders is

their relation to acquired disorders following brain damage
[38]. Is a child with the developmental disorder of SLI similar
in any way to the adult with acquired aphasia? Modeling was
able to generate insights into this question by investigating
the consequences of damaging a learning system in its initial
state (analogous to a developmental disorder) compared with
damaging a system in its trained state (analogous to an adult
acquired deficit) [100]. The results demonstrated that some
types of damage hurt the system much more in the “adult”
state (e.g., severing network connections), while others hurt
the system much more in the “infant” state (e.g., adding noise
to processing). The adult system can tolerate noise because
it already possesses an accurate representation of the knowl-
edge, but loss of network structure leads to a decrement in
performance since connections contain established knowledge.
By contrast, the infant system can tolerate loss of connections
because it can reorganize remaining resources to acquire the
knowledge, but is impaired by noisy processing since this blurs
the knowledge that the system has to learn. Empirical evidence
supports the importance of a good representation of the input
during language acquisition. When McDonald [53] analyzed
the conditions for successful and unsuccessful language acqui-
sition across a range of populations (including early and late
first language learners, early and late second language learners,
individuals with Down syndrome, Williams syndrome, and
SLI), the results indicated that good representations of speech
sounds were key in predicting the successful acquisition of a
language, including its syntax.

Computational models of variability can serve a particularly
important role where this variability is in part of genetic origin.
The developmental pathway between gene expression and chil-
dren’s behavior is extremely remote, since genes only code for
proteins (or control the action of other genes) at a cellular level,
while behavior is a property of the whole organism potentially
occurring many years after the relevant gene expression exerted
its role on development. To establish how variability on the
genome produces variability in behavior, we must understand
how differences in gene expression alter the low-level proper-
ties of the brain as it develops, how these differences lead to
atypical neurocomputational properties, and how these proper-
ties deflect the subsequent developmental trajectory a child fol-
lows through engaged interaction with their subjective physical
and social environment [38], [45]. Although one might read in a
newspaper that “ a gene for dyslexia has been found,” the causal
pathway between the two will only be complete when a theory
of how gene expression modulates functional brain develop-
ment is reconciled with a developmental computational model
of learning to read which, under suboptimal computational con-
ditions, struggles to pronounce the word YACHT or the made-up
word PLONCH after ample amounts of training.

III. FOUR CONNECTIONIST MODELS OF

PSYCHOLOGICAL DEVELOPMENT

A broad range of neural network methods fall within the gen-
eral framework of Connectionism. These include feedforward
and recurrent associative networks (e.g., [19]), autoassociator
networks (e.g., [93]), “generative” networks that grow their own
architectures as part of the developmental process (e.g., [89]),
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adaptive resonance networks (e.g., [74]), and multiagent ap-
proaches (e.g., [85]) among others. Interested readers can find
out more about these and other approaches that are discussed in
more detail elsewhere [50].

Connectionist modeling tools have been used to investigate
a wide variety of different domains within development, span-
ning all the way from early nonverbal infant behaviors to the
high-level reasoning of older children. These include infant-ob-
ject interactions [46], [56], [58], problem solving on the bal-
ance-scale task [51], [76], [91], classic Piagetian cognitive stage
tasks [49], [88], numerical reasoning [1], and set discrimination
learning [94].

A large body of research has also focused on explaining
the processes of language development (see [11] and [12],
for reviews). Models have employed self-organizing networks
to explore processes of early phonological development in
learning to categories speech sounds [59], [110]. Recurrent
architectures have been employed in models of segmenting the
speech stream into discrete words [10] and extracting syntactic
structure from sequences of words (e.g., [18]). Generative net-
works have been employed to model the acquisition of personal
pronouns [61]. Feedforward networks and attractor networks
have been used in models of the development of vocabulary
[26], [72], and of metaphor comprehension [103], as well as
in two of the most heavily researched areas of language acqui-
sition, the development of inflectional morphology, including
past tense and pluralization (e.g., [24], [28], MacWhinney &
Leinbach, 1991; [67]–[70], [82], [101]), and the development
of reading (e.g., [29], [66], [87]).

In the following sections, we focus on four examples of con-
nectionist models taken from our own work that illustrate the
kind of modeling that is well received by developmental psy-
chologists. Our intention is to provide the readers with a real
flavor for the objectives of cognitive computational modeling, as
well as the obstacles encountered and their proposed solutions.
We begin with two models of early category learning in infancy.
One focuses on the infants’ behavior as it unfolds within a test
session, while a second explores changes in how infants catego-
rize across development. We then describe two models of atyp-
ical development. The first examines inflectional morphology
(an aspect of language acquisition) in SLI, while the second dis-
cusses the development of atypical gaze behavior in infants with
autism and Williams syndrome.

A. Perceptual Category Learning in Early Infancy

Categories and concepts facilitate learning and reasoning
by partitioning the world into manageable units. Even 3- to
4-month-olds can categorize a range of real-world images.
Research by Quinn and Eimas demonstrates that these infants
can categorize photographs of cats, dogs, horses, birds, tables,
and chairs [47]. However, the perceptual categories do not
always have the same characteristics as might be expected from
the adult concepts. In particular, the extension and exclusivity
of infant categories (i.e., the range of exemplars accepted or
rejected as members of the category) may differ from that of
adult categories.

Quinn et al. [73] used a familiarization/novelty-preference
technique to determine if the perceptual categories of familiar
animals (e.g., cats and dogs) acquired by young infants would

exclude perceptually similar exemplars from contrasting basic-
level categories. They found that when 3- to 4-month-olds are
familiarized with six pairs of cat photographs presented sequen-
tially (12 photographs), the infants will subsequently prefer to
look at a novel dog photograph rather than a novel cat pho-
tograph. Because infants prefer to look at unfamiliar stimuli
[20], this was interpreted as showing that the infants had de-
veloped a category of Cat that included novel cats (hence, less
looking at the cat photograph) but excluded novel dogs (hence,
more looking at the dog photograph). However, if the infants
are initially familiarized with six pairs of dog photographs se-
quentially (12 photographs), they will show no subsequent pref-
erence for looking at either a novel dog or a novel cat. Fur-
thermore, control conditions revealed that: 1) the infants would
prefer to look at a novel test bird after initial familiarization
with either dogs or cats; 2) there is no a priori preference for
dogs over cats; and (3) the infants are able to discriminate within
the Cat and Dog categories. Taken together, these findings led
Quinn et al. to suggest that the 3- to 4-month-olds had formed
a perceptual category of Dog that included novel dogs but also
included novel cats.

Mareschal et al. [44] constructed a simple connectionist
model to try to explain this behavior in terms of simple associa-
tive memory loading multiple exemplars. The model consisted
of a standard 10–8–10 feedforward autoencoder network
trained using the backpropagation learning algorithm. The data
for training the networks were obtained from measurements of
the original Cat and Dog pictures used by Eimas and Quinn.
There were 18 dogs and 18 cats classified according to the
following ten traits: head length, head width, eye separation,
ear separation, ear length, nose length, nose width, leg length,
vertical extent, and horizontal extent. Networks were trained
for a fixed 250 epochs per pair of stimuli. This was done to
reflect the fact that in the Quinn and Eimas studies, infants were
shown pictures for a fixed duration of time.

Twelve items from one category were presented sequentially
to the network in groups of two (i.e., weights were updated in
batches of two) to capture the fact that pairs of pictures were
presented to the infants during the familiarization trials. The re-
maining six items from each category were used to test whether
the networks had formed categorical representations.

Like infants, these networks form both Cat and Dog cate-
gories. Fig. 1 shows what happens when networks trained on
cats are presented with a novel cat and a dog, and when net-
works trained on dogs are tested with a novel dog and a cat. In
this model, higher error is taken to correlate with longer looking
time, as it will take a greater number of iterations to reduce the
error: the infant will be interested in an item until the system has
assimilated it. When the networks are initially trained on cats,
the presentation of a novel dog results in a large error score com-
pared with a novel cat, corresponding to the results observed
with infants in terms of a longer looking time. Dogs are not in-
cluded within the category representation of cats. In contrast,
when the networks are initially trained on dogs, the presentation
of a novel cat results in only a small increase in error compared
with a novel dog suggesting that the cats have been included in
the dog category.

One advantage of building a model is that it can be taken apart
to explore what causes the observed behaviors. Connectionist
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Fig. 1. Network error (predicted looking time) to novel cat and novel dog
stimuli for networks trained on (a) cats and (b) dogs (from [44] reprinted with
permission).

networks extract the correlations between features present in
their learning environment. The variation of the internal repre-
sentations (developed across the hidden units) reflects the vari-
ation of the corresponding categories in the environment. Fig. 2
shows the frequency distributions of the ten input features for
both cats and dogs. Each feature has been fit to a normal dis-
tribution. In almost all cases, the distribution for each Dog trait
(represented by the thick dark lines) subsumes the distribution
for the corresponding trait for cats. The narrower distributions
for most Cat traits (represented by the thin light lines), on the
other hand, do not subsume the range of values for the corre-
sponding Dog traits. In other words, cats are possible dogs but
the reverse is not the case: most dogs are not possible cats.

The crucial distributional feature of the data is that Cat fea-
tures are (in general) subsumed within the distribution of Dog
features. It is not just the added variability of dogs along cer-
tain features, but the subset relationship that is crucial for ex-
plaining the asymmetry. Connectionist networks develop in-
ternal representations that reflect the distributions of the input
features. Thus, the internal representation for Cat will be sub-
sumed within the internal representation for Dog. It is because
the internal representations share this inclusion relationship that
an asymmetry in error (looking time) is observed. The behavior
arises because of an interaction between the statistics of the
environment and the computational properties of the learning
algorithm.

Because of its close tie to the original experiments, the same
model can then be used to explain and predict infant behaviors
in novel contexts. If the infant looking time behaviors are in-
deed driven by the inclusivity relation among the distribution
of features in the sets of pictures shown to the infants during
familiarization, then it should be possible to manipulate their
looking time by manipulating the distributions of features. This
is exactly what was found. French and colleagues [25] devel-
oped sets of images that either inverted the inclusion relations

Fig. 2. Normal distributions of cat and dog feature values generated from the
means and standard deviations of measurements taken from stimuli used to test
infants (from [44] reprinted with permission).

(Dogs were now included within Cats) or removed the inclu-
sion relations (neither set was included within the other). When
infants were familiarized with these sets of images in the same
way as before, they then showed either a reversed looking time
pattern or complete separation, respectively.

In summary, this model illustrates how categorical represen-
tations of visually presented stimuli can be acquired within a
testing session. An associative system that parses stimuli into
distinct features and develops distributed representations will
also develop categories with the same exclusivity asymmetries
as 3- to 4-month-olds when presented with the same stimuli as
these infants. This analysis constitutes a novel explanation of
the infant data that emerges from the construction of a compu-
tational model that makes testable empirical predictions.

B. The Emergence of Correlation-Based Category Learning

One striking aspect of infant categorization is a shift in
the way in which infants process objects with increasing age.
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Younger and Cohen [116] have argued that while 4-month-olds
process objects globally (i.e., as the sum of their individual
features), 10-month-olds take correlations between features
into account when forming categories. Experiments by Younger
and Cohen [115], [116] employed a looking-time procedure in
which infants were shown line drawings of artificial cartoon
animals. In these experiments, infants were familiarized to
a number of stimuli that could be construed as forming one
or several categories. Younger found that when a test item
violated the correlations between features that were present
in the training items, 10-month-olds but not 4-month-olds,
noticed this difference. This shift in categorization behavior
from 4- to 10-month-olds was claimed to be qualitative, from
processing features in isolation to processing relations between
features. Features in the real world are correlated and, thus,
the ability to process combinations between them provides
valuable information about categories.

In contrast, Westermann and Mareschal [109] argue that the
change in infant categorization behavior observed between 4
and 10 months of age is caused by a gradual refinement of the
infants’ representational acuity. This hypothesis, called the Rep-
resentational Acuity Hypothesis can be directly linked to aspects
of neural development in the cortex. The main assumption of
the Westermann and Mareschal hypothesis is that the receptive
field size of units on the representational map decrease during
development, and this decrease leads to an increase in represen-
tational acuity. This process is analogous to that which occurs
in the development of visual acuity. During the first months of
life, increases in visual acuity are believed to be partly depen-
dent on the decrease of receptive field size of visual neurons
([83], Wilson, 1988). In the case of representational acuity, the
authors argue that the decrease of receptive field sizes of neurons
in a higher cortical area has a similar functional consequence:
it leads to an increased accuracy in the feature-based represen-
tation of objects and causes the developmental shift in catego-
rization behavior from global to local processing of objects.

This hypothesis was tested with simulations using a Gaussian
autoencoder network (an autoencoder network whose hidden
units have Gaussian activation functions with localized recep-
tive fields). The networks were trained and tested using the exact
same regime and animal stimuli as Younger and Cohen [116]
used to test the infants. To mimic the infant testing procedure,
the model was trained on each familiarization item (animal pic-
ture) for a fixed number of learning steps, and after all training
items had been presented, it was tested on the three items used
to test the infants (correlated features, uncorrelated features, and
novel). Once again, network output error was taken as a measure
of the looking time towards a particular item.

The result of this simulation is shown in Fig. 3. With large
receptive fields, the errors for the correlated and uncorrelated
animal stimuli were the same, whereas the error for the novel
stimulus was higher, reflecting the profile of 4-month-olds.
Again, with decreasing receptive fields, the novel error de-
creased, whereas the uncorrelated error increased, leading to
the profile observed in 10-month-olds. A closer look at the
simulation results showed that the model also captured fine
details of the infants’ behavior such as the decrease in looking
time towards the novel stimulus with increasing age.

Fig. 3. Model response to correlated, uncorrelated, and novel test stimuli with
increasing age (decreasing receptive field sizes) (from [109] reprinted with
permission).

In summary, the Gaussian autoencoder model is able to cap-
ture both the main effects observed across development, as well
as the finer grained behavioral detail in the infant data. This
simulation illustrates how shrinking receptive fields could ex-
plain the developmental profile of infants even when not all
feature values in the stimuli were correlated. The strength of
the Gaussian autoencoder model is that: 1) it relies on general
mechanisms known to function in other domains; 2) it links
neural and cognitive levels of description; and 3) because it is
clearly tied to empirical experiments, it can be used to make spe-
cific testable prediction of novel behaviors. While Younger and
Cohen [116] postulated that the infant undergoes a qualitative
shift from processing features to a mode of processing corre-
lations between features, the model processes correlations be-
tween features from the start. The changes in behavior are pro-
duced by increases in representational acuity. Thus, the model
produces an alternative account to that offered by Younger and
Cohen (see [96], for discussion). The notion that changes in
representational acuity may explain developmental shifts in be-
havior has found wider application, for example, in work on se-
mantic development [79].

C. Specific Language Impairment (SLI) and Inflectional
Morphology

SLI is a developmental disorder of language in the absence
of evidence for brain damage, hearing deficits, severe environ-
mental deprivation, or general learning disabilities [41]. Non-
verbal abilities are usually in the normal range, but its absolute
specificity to language is a matter of debate (see [106], for a re-
cent review). SLI is a heterogeneous disorder that may impact
on different facets of language to different extents, and behav-
ioral genetics indicates that the disorder has a strong genetic
component [5]. Children with SLI frequently exhibit particular
problems in morphology and in syntax. For example, Rice [75]
has argued that for English, problems in acquiring the English
past tense may be a useful diagnostic for the disorder.
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Fig. 4. Accuracy levels in an English past tense elicitation task for typically developing children (mean age 9 years, 10 months; [103]), children with SLI (mean
age 11 years, 2 months; [108]), and the model trained under normal conditions or with a shallow sigmoid in the activation function of its processing units (see
[97]). The model is trained for 250 epochs for the child data and 500 epochs for adult outcome.

The English past tense is marked by a distinction between reg-
ular verbs (e.g., talk-talked) and irregular verbs (e.g., go-went,
think-thought, hit-hit), and the regular pattern is frequently ex-
tended by children to novel words (e.g., wug-wugged). In SLI,
children exhibit low levels of accuracy in producing the English
past tense, both for regulars and irregulars, instead producing
predominantly unmarked forms (e.g., talk) in contexts where
the past tense is appropriate. Fig. 4 includes representative em-
pirical data for a sample of children with SLI age around 11
years (from [108]), compared with a slightly younger control
group (from [103]). Regulars are produced at an accuracy level
of about 20% but still hold a slight advantage over irregulars as
in the control children. There are very much reduced levels of
generalization to novel stems (e.g., wugged) in the SLI group,
but still sparse overgeneralization errors (e.g., thinked). Since
younger typically developing children go through a stage of not
inflecting verbs, these low levels of accuracy are sometimes seen
as an atypical extension of a normal “optional infinitive” stage
of language development (see [75]).

In comparison to the control sample, the children with SLI
suffer a relatively larger deficit on regular verbs than on irregular
verbs. Ullman and Pierpont [106] have recently proposed that
the SLI pattern may be explained in terms of a developmental
problem with the part of the brain that learns automatic skills,
which they implicate in learning the regular past tense rule. The
residual level of past tense performance is then taken to result
from compensation from a separate lexical memory system (see
also [108]). That is, these children cannot learn the rule and in-
stead just learn a set of individual past tenses by rote. Evidence
for this comes from an exaggeration of frequency effects in reg-
ular verb formation in SLI. Typically, developing children do not
show this, and frequency is taken to be a hallmark of a memory
system not a skill system.

A large body of work using connectionist networks to study
normal development of the English past tense already exists (see
[101] for a review). These models are not uncontested in the
field [43], [65], but few alternate accounts have been explored
computationally (see [98]). The presence of a normal model al-
lows us to explore parameters that could produce various atyp-
ical profiles. The normal model (e.g., [35]) sees this skill as re-
quiring the individual to learn to modulate the sound of the verb
in order to fit the intended grammatical context of the sentence,
based on knowledge of the phonological form of the verbs stem

Fig. 5. (a) Past tense model architecture; the model is a backpropagation feed-
forward network. (b) Manipulation to the activation function of the hidden and
output units, applied to the start state of the atypical model.

and input from lexical semantics about that word’s identity. This
architecture is shown in Fig. 5(a).

Thomas and Karmiloff–Smith [101] assessed the result of a
wide range of manipulations to this normal model in order to ex-
plore the developmental parameter space of the system, that is,
what range of atypical developmental trajectories and error pat-
terns could be produced under different constraints. One of the
parameter manipulations produced a reasonable fit to the empir-
ical data for SLI [97], shown in Fig. 4 (see also [34] and [36], for
other related approaches to modeling SLI). The model captured
the low level of inflections, a greater deficit for regulars than ir-
regulars, the slight advantage for regulars over irregulars, and
the low residual levels of generalization and overgeneralization
errors. This trajectory was the result of reducing the slope of the
sigmoid activation function in the processing units comprising
the hidden and output layers [shown in Fig. 5(b)]. Three inter-
esting conclusions can be drawn from this result.

First, the shallow sigmoid produced a problem in learning
because it impaired the formation of sharp category boundaries
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to partition the internal representational space of the network.
Sharp boundaries are necessary to learn generalizable reg-
ularities: every item that falls inside the category should be
treated the same. The suboptimal activation function delayed all
learning, but retarded the regular verbs more than the irregular
verbs despite the fact that both were processed in a common
channel. This contrasts with the inference drawn by Ullman
and Pierpont [106] that the SLI profile must imply damage
to a rule-specific structure in the learning system. Here, the
processing property of units in the shared channel happened
to be more relevant to one class of mappings than another. In
other words, domain-specific behavioral deficits do not have
to be caused by initial damage to domain-specific processing
structures.

Second, in addition to fitting the overall accuracy levels, the
atypical model replicated the empirical pattern of exaggerated
frequency effects observed in residual regular verb performance
[97]. The absence of frequency effects in regulars in normal
models was the result of a ceiling effect in the nonlinear pro-
cessing units for this mapping class. In the backpropagation
learning algorithm, weight change is proportional to the slope
on the sigmoid activation function. Because the low derivative
of the shallow sigmoid slowed down learning, it encouraged
item-based effects such as frequency. Furthermore, in the atyp-
ical model, the changed internal parameter altered the balance
between the information sources used to drive performance. In
the normal model, the phonological input tends to drive reg-
ular verb performance, while lexical-semantic input tends to
drive irregulars. In the atypical model, lexical-semantics drove
both regular and irregular verb performance, because the model
was struggling to learn the phonological regularities linking the
stem and its inflected form. Residual performance was therefore
achieved using atypical representations.

Third, with the model we can run on training to see whether
this developmental problem with past tense formation resolves
itself. Fig. 4 also demonstrates performance at the end of
training. The atypical model has now reached ceiling on the
training set – it has caught up, as if its development was a
form of “delay.”5However, importantly, the system retained a
deficit in generalization to novel stems (wugged). Moreover,
in its end state performance, the atypical balance between
the sources of information driving the output also persisted.
Therefore, although further training eventually produced be-
havior on the training set that looked normal, the network had
actually learned an atypical underlying function, revealed by
its different use of input information, and by the inductive bias
that diverged from the normal case. Relatively little work has
explored the extended outcome of SLI into adulthood, but some
parallels may be drawn between existing data and the model’s
prediction. Although by adulthood there is evidence of recovery
in some areas of SLI such as vocabulary, persistent problems
can be found in generalizing speech sounds to novel stimuli
in short-term memory tasks such as being asked to repeated
nonsense words [6], [104].

5It can be shown formally that reducing the slope on the sigmoid can be com-
pensated for by increasing the size of the weights feeding into a processing unit;
additional training serves to increase weight size and so can ameliorate the ef-
fects of the shallow slope.

The model of SLI has some limitations. As a result of its
simplified architecture, it simulates accuracy levels rather than
error patterns in past tense, and its normal level of generaliza-
tion is lower than that shown by children. However, the simu-
lation: 1) captured atypical accuracy patterns as the outcome of
a developmental process; 2) also simulated atypical frequency
effects in past tense production observed in children with SLI;
and 3) generated testable predictions about resolution of the dis-
order. Finally, it suggested that mechanisms explaining the be-
havioral impairments in the disorder might not be specific to
the domain of past tense (or even language), but rather a general
property of associative systems that is atypical in the inflectional
system. This account contrasts with domain-specific explana-
tions of SLI, for example, that these children have an “extended
optional infinitive” stage in their language development [75].

D. The Development of Gaze Following Behavior in Infants
With Autism and Williams Syndrome

The previous example discovered a mechanistic explanation
for a case of disordered development via an exploration of the
developmental parameter space of a normal model. Parameter
manipulations can, of course, be principled and based on known
features of the disorder. The implementation then serves to test
whether one feature of the target disorder may serve as a causal
explanation for other observed features of the disorder via a de-
velopmental process. The following model sought to assess this
possibility for two disorders, autism and Williams syndrome,
with respect to a single target behavior of eye gaze. Note, of
course, that the model was not intended as a general account of
either disorder: both autism and Williams syndrome have mul-
tifaceted atypical cognitive profiles).

Triesch et al. [105] recently proposed a computational model
of the emergence of gaze following skills in infant-caregiver in-
teractions. Shared attention plays a crucial role in the communi-
cation between infants and their caregivers and by 9–12 months,
most infants can follow an adult’s gaze and pointing gestures to
locate objects in the world. This ability might be thought to re-
quire a level of social understanding: the infant realizes that the
adult intends to refer to some event in the world. In contrast,
Triesch et al. constructed their model to test the idea that the
emergence of gaze following may be explained more simply as
the infant’s gradual discovery that monitoring the caregiver’s
direction of gaze is predictive of where rewarding objects are
located. In addition to capturing normal development, Triesch
et al. then sought to capture the eye gaze profiles demonstrated
by two developmental disorders. In autism, deficits in shared
attention are a consistent early predictor of subsequent social
and language deficits [62]. In Williams syndrome (WS), a rare
genetic disorder [16], deficits in shared attention have been ob-
served in toddlers despite a hypersocial personality profile [40].

In contrast to the backpropagation network models used in
the previous examples, Triesch et al. based their model of gaze
following on a biologically plausible reward-driven mechanism
called Temporal Difference learning (a type of reinforcement
learning). The infant is construed as an agent situated in an en-
vironment. The agent generates actions based on what it per-
ceives from the environment, and then potentially receives a re-
ward for its action along with updated information of the new
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state of the environment. In the current model, the environment
depicted a range of locations that might contain the caregiver,
an interesting object, or nothing. If the infant were fixating the
caregiver, information would also be available on the direction
of the caregiver’s gaze (i.e., at the infant or to some location
in the environment). Rewards were available to the infant for
fixating an object or the caregiver, but these rewards habituated
(reduced) over time as the infant became bored.

The aim of temporal difference learning is to acquire esti-
mates of the potential reward of each of the system’s actions
in response to each possible environmental state it might en-
counter. It achieves this initially by exploring the environment
to see what rewards are available. Note that some rewards are
gained by sequences of actions, and so reward estimate infor-
mation must percolate back in time from when the reward oc-
curred to the sequence of actions that preceded it. For example,
if fixating an object generates a reward and that action hap-
pens to follow a previous action of choosing the location indi-
cated by the caregiver’s gaze, then this prior action should also
have its reward estimate increased. Similarly, this sequence must
have begun by fixating the caregiver, so again, this first action
should have its reward estimate increased. The system faces two
dilemmas: 1) Should it explore the environment to gain more
information about where the greatest rewards lie or should it
exploit its current knowledge to maximize rewards? (2) Should
the system accept small rewards generated by an immediate ac-
tion, or should it defer in favor of an alternative action that may
produce a lesser reward now but potentially a larger reward in
the longer term? Both dilemmas correspond to algorithmic vari-
ables, some of the free parameters in the model.

The Triesch et al. [105] model of gaze following had two
components, one to predict when it would be advantageous for
the infant to shift gaze, and a second to predict where the optimal
location in the environment would be to shift gaze to (including
the caregiver’s face and locations of potential objects in the en-
vironment). Through rewards gained during exploration of a
simulated environment, seeded with interesting objects in fixed
random locations and a caregiver who would sometimes look at
these objects (and sometimes at the infant), the model success-
fully acquired gaze following. Not unexpectedly, the ability to
shift gaze to look at the caregiver preceded the ability to use the
caregiver’s gaze direction as a cue to fixate the relevant location.

With the normal model in hand, Triesch et al. then used
the following facts from the two developmental disorders. In
autism, children frequently show gaze avoidance, not looking
at the faces of other people and particularly avoiding their eyes
(e.g., [15]). It is possible children with autism find eyes to be
aversive stimuli rather than simply neutral. In WS, the converse
is the case. Infants and children with WS find faces fascinating,
often fixating on them for long periods in preference to other
objects. This is part of a personality profile that has been
described as hypersocial (e.g., [3] and [37]). Triesch et al.
used these constraints to alter the reward contingencies for
the two disorders: for autism, fixating objects was interesting
but fixating the caregiver’s face was given a negative reward;
for WS, fixating faces was given a much higher reward. In
both cases, the model generated an atypical developmental
trajectory, with the emergence of gaze following absent or
substantially delayed.

Given the implemented model, it is also possible to generate
predictions on how gaze following might be affected in other
disorders. Attention Deficit Hyperactivity Disorder (ADHD) is
a developmental disorder that is not typically diagnosed until
childhood. However, its basis appears to be in part genetic (e.g.,
[2]). Using a Temporal Difference learning model, Williams and
Dayan ([112]; see also [113]) have shown that the behavioral
features of ADHD may be simulated by altering the parameters
of the system so that larger long-term rewards are discounted
in favor of smaller short-term rewards: the system is effectively
impulsive and unable to pursue long-term goals. Richardson and
Thomas [77] demonstrated that if the parameter manipulations
of the Williams and Dayan ADHD model are applied to Triesch
et al.’s model, then impairments in the development of early
gaze following are also observed.6 If the genetic influence on
ADHD means that precursors to the childhood behavioral symp-
toms can be observed in infancy, this modeling result predicts
that atypical gaze following may be just such a precursor. Impor-
tantly, this precursor pattern would not match autism (in which
the infant avoids the caregiver’s face) or WS (in which there is
longer fixation on the caregiver’s face) but pertain specifically
to reduced use of the caregiver’s face to predict object locations,
compared to noncontingent gaze shifts to the caregiver’s face or
to objects.

Our second disorder example again builds on the initial im-
plementation of a normal model of development. In this case: 1)
two empirically motivated, a priori manipulations of start state
parameters (differential rewards for certain actions) were used
to test the validity of causal theories of how behavioral features
in two disorders may be linked across development (gaze avoid-
ance and atypical shared attention, exaggerated interest in faces
and atypical shared attention, respectively) and 2) novel predic-
tions were generated regarding potential prediagnosis precur-
sors in a further disorder.

Taken together, the use of the developmental computational
models to investigate developmental disorders underscores a
theoretical point made by Karmiloff–Smith [38]. Disorders that
appear very different in their adult states may, in fact, be traced
back to infant systems that share much in common, but differ in
certain low-level neurocomputational properties (see [45], for
further discussion). It is development itself – together with the
characteristics of the system that is undergoing development –
that produces divergent behavioral profiles.

IV. CONCLUSION

Computational modeling can make a fundamental contribu-
tion to the understanding of perceptual and cognitive develop-
ment. The development of relevant computational models is an
essential step in moving from a descriptive science that just
tracks what changes occur over time, to a causal science that
proposes to explain the emerging behaviors that are observed
in terms of well specified dynamic processes. Because they are
well specified, the candidate causal processes and mechanisms
can also be related to neural processes (if necessary), thus en-
abling a bridge between multiple levels of descriptions to be

6Specifically, in separate conditions, Richardson and Thomas altered the
learning rate, temperature, and discounting rate parameters of the temporal
difference algorithm, in line with Williams and Dayan’s [112] proposals of
possible ways to capture the ADHD profile.
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built. Transitions from descriptive to explanatory sciences have
already occurred in most of the physical sciences. The time
is more than ripe for such a transition in developmental psy-
chology.

We end our article with a cautionary note. It is essential to
distinguish between the use of computational models in a psy-
chological/explanatory mode, and their use in an engineering
mode. As we argued in the introduction, these approaches can be
complementary and can cross-fertilize. The study of biological
systems can generate new possible engineering solutions. En-
gineering approaches to machine learning and robotics – unfet-
tered by psychological constraints and required to build systems
that respond in real time given the noisy data typically furnished
by the real world – can reveal new ways in which algorithmic
systems can learn. However, we sincerely hope modelers using
both approaches would focus on explanation, as well as imple-
mentational issues. The key to success is not just getting the
models to work but in understanding why they work. If the com-
munity cannot understand how the models work, then (however
admirable the achievement) the models have little explanatory
value. In this context, it is worth considering a line by the comic
science fiction writer Douglas Adams brought to our attention
by Andy Clark in his book Microcognition:

The Hitch Hiker’s guide to the Galaxy, in a moment
of reasoned lucidity which is almost unique amongst
its current tally of 5,975,509 pages, says of the Sirius
Cybernetics Corporation products that “it is very easy to
be blinded to the essential uselessness of them by the sense
of achievement you get from getting them to work at all. In
other words – and this is the rock solid principle on which
the whole of the corporation’s Galaxy-wide success is
grounded – their fundamental design flaws are completely
hidden by their superficial design flaws” [13, p. 7].

A model of development that ignores the scientists who
will use it and build upon it runs the risk of sharing many
features with the Sirius Cybernetics Corporation products.
Fortunately, this does not need to be the case and, indeed, has
not been the case for many highly successful published models
of development.
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