
 1

 

 

 

 

 

Connectionist models of cognition 

 

Michael S. C. Thomas1 and James L. McClelland2 

1School of Psychology, Birkbeck College, London, UK 

2Department of Psychology, Stanford University, US 

 

 

 

To appear in: Sun, R. (Ed.) (2008). Cambridge handbook on computational cognitive 

Modeling. Cambridge University Press 

 

 

Address for correspondence:  

Dr. Michael Thomas 
Developmental Neurocognition Laboratory 
School of Psychology 
Birkbeck College, University of London 
Malet Street, Bloomsbury 
London WC1E 7HX, UK 
Email: m.thomas@bbk.ac.uk 
www.psyc.bbk.ac.uk/research/DNL/  
Tel.:      +44 (0)20 7631 6386 
Fax:      +44 (0)20 7631 6312 



 2

1. Introduction 

In this chapter, we review computer models of cognition that have focused on the use 

of neural networks. These architectures were inspired by research into how 

computation works in the brain and subsequent work has produced models of 

cognition with a distinctive flavor. Processing is characterized by patterns of 

activation across simple processing units connected together into complex networks. 

Knowledge is stored in the strength of the connections between units. It is for this 

reason that this approach to understanding cognition has gained the name of 

connectionism. 

 

2. Background 

Over the last twenty years, connectionist modeling has formed an influential approach 

to the computational study of cognition. It is distinguished by its appeal to principles 

of neural computation to inspire the primitives that are included in its cognitive level 

models. Also known as artificial neural network (ANN) or parallel distributed 

processing (PDP) models, connectionism has been applied to a diverse range of 

cognitive abilities, including models of memory, attention, perception, action, 

language, concept formation, and reasoning (see, e.g., Houghton, 2005). While many 

of these models seek to capture adult function, connectionism places an emphasis on 

learning internal representations. This has led to an increasing focus on developmental 

phenomena and the origins of knowledge. Although, at its heart, connectionism 

comprises a set of computational formalisms, it has spurred vigorous theoretical 

debate regarding the nature of cognition. Some theorists have reacted by dismissing 

connectionism as mere implementation of pre-existing verbal theories of cognition, 

while others have viewed it as a candidate to replace the Classical Computational 
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Theory of Mind and as carrying profound implications for the way human knowledge 

is acquired and represented; still others have viewed connectionism as a sub-class of 

statistical models involved in universal function approximation and data clustering. 

In this chapter, we begin by placing connectionism in its historical context, 

leading up to its formalization in Rumelhart and McClelland’s two-volume Parallel 

Distributed Processing (1986) written in combination with members of the Parallel 

Distributed Processing Research Group. We then discuss three important early models 

that illustrate some of the key properties of connectionist systems and indicate how 

the novel theoretical contributions of these models arose from their key computational 

properties. These three models are the Interactive Activation model of letter 

recognition (McClelland & Rumelhart, 1981; Rumelhart and McClelland, 1982), 

Rumelhart and McClelland’s model of the acquisition of the English past tense 

(1986), and Elman’s simple recurrent network for finding structure in time (1991). 

We finish by considering how twenty-five years of connectionist modeling has 

influenced wider theories of cognition. 

 

2.1 Historical context 

Connectionist models draw inspiration from the notion that the information 

processing properties of neural systems should influence our theories of cognition. 

The possible role of neurons in generating the mind was first considered not long after 

the existence of the nerve cell was accepted in the latter half of the 19th Century 

(Aizawa, 2004). Early neural network theorizing can therefore be found in some of 

the associationist theories of mental processes prevalent at the time (e.g., Freud, 1895; 

James, 1890; Meynert, 1884; Spencer, 1872). However, this line of theorizing was 

quelled when Lashley presented data appearing to show that the performance of the 



 4

brain degraded gracefully depending only on the quantity of damage. This argued 

against the specific involvement of neurons in particular cognitive processes (see, 

e.g., Lashley, 1929). 

In the 1930s and 40s, there was a resurgence of interest in using mathematical 

techniques to characterize the behavior of networks of nerve cells (e.g., Rashevksy, 

1935). This culminated in the work of McCulloch and Pitts (1943) who characterized 

the function of simple networks of binary threshold neurons in terms of logical 

operations. In his 1949 book The Organization of Behavior, Donald Hebb proposed a 

cell assembly theory of cognition, including the idea that specific synaptic changes 

might underlie psychological principles of learning. A decade later, Rosenblatt (1958, 

1962) formulated a learning rule for two-layered neural networks, demonstrating 

mathematically that the perceptron convergence rule could adjust the weights 

connecting an input layer and an output layer of simple neurons to allow the network 

to associate arbitrary binary patterns. With this rule, learning converged on the set of 

connection values necessary to acquire any two-layer-computable function relating a 

set of input-output patterns. Unfortunately, Minsky and Papert (1969) demonstrated 

that the set of two-layer computable functions was somewhat limited – that is, these 

simple artificial neural networks were not particularly powerful devices. While more 

computationally powerful networks could be described, there was no algorithm to 

learn the connection weights of these systems. Such networks required the postulation 

of additional internal or ‘hidden’ processing units, which could adopt intermediate 

representational states in the mapping between input and output patterns. An 

algorithm (backpropagation) able to learn these states was discovered independently 

several times. A key paper by Rumelhart, Hinton and Williams (1986) demonstrated 
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the usefulness of networks trained using backpropagation for addressing key 

computational and cognitive challenges facing neural networks. 

 In the 1970s, serial processing and the Von Neumann computer metaphor 

dominated cognitive psychology. Nevertheless, a number of researchers continued to 

work on the computational properties of neural systems. Some of the key themes 

identified by these researchers include the role of competition in processing and 

learning (e.g., Grossberg, 1976; Kohonen, 1984), the properties of distributed 

representations (e.g., Anderson, 1977; Hinton & Anderson, 1981), and the possibility 

of content addressable memory in networks with attractor states, formalized using the 

mathematics of statistical physics (Hopfield, 1982). A fuller characterization of the 

many historical influences in the development of connectionism can be found in 

Rumelhart and McClelland (1986, chapter 1), Bechtel and Abrahamsen (1991), 

McLeod, Plunkett, and Rolls (1998), and O’Reilly and Munakata (2000). Figure 1 

depicts a selective schematic of this history and demonstrates the multiple types of 

neural network system that have latterly come to be used in building models of 

cognition. While diverse, they are unified on the one hand by the proposal that 

cognition comprises processes of constraint satisfaction, energy minimization and 

pattern recognition, and on the other that adaptive processes construct the 

microstructure of these systems, primarily by adjusting the strengths of connections 

among the neuron-like processing units involved in a computation. 
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Figure 1. A simplified schematic showing the historical evolution of neural network 

architectures. Simple binary networks (McCulloch & Pitts, 1943) are followed by 2-

layer feedforward networks (perceptrons; Rosenblatt, 1958). Three subtypes then 

emerge: 3-layer feedforward networks (Rumelhart & McClelland, 1986), competitive 

or self-organizing networks (e.g., Grossberg, 1976; Kohonen, 1984), and interactive 

networks (Hopfield, 1982; Hinton & Sejnowksi, 1986). Adaptive interactive networks 

have precursors in detector theories of perception (Logogen: Morton, 1969; 

Pandemonium: Selfridge, 1955) and in handwired interactive models (IA: McClelland 

& Rumelhart, 1981; IAC: McClelland, 1981; Stereopsis: Marr & Poggio, 1976; 

Necker cube: Feldman, 1981, Rumelhart et al., 1986). Feedforward pattern associators 

have produced multiple subtypes: for capturing temporally extended activation states, 

cascade networks in which states monotonically asymptote (e.g., Cohen, Dunbar, & 

McClelland, 1990) and attractor networks in which states cycle into stable 

configurations (e.g., Plaut & McClelland, 1993); for processing sequential 

information, recurrent networks (Jordan, 1986; Elman, 1991); for systems that alter 

their structure as part of learning, constructivist networks (e.g., cascade correlation: 

Fahlman & Lebiere, 1990; Shultz, 2003). 
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2.2 Key properties of connectionist models 

Connectionism starts with the following inspiration from neural systems: 

computations will be carried out by a set of simple processing units operating in 

parallel and affecting each others’ activation states via a network of weighted 

connections. Rumelhart, Hinton and McClelland (1986) identified seven key features 

that would define a general framework for connectionist processing. 

The first feature is the set of processing units ui. In a cognitive model, these 

may be intended to represent individual concepts (such as letters or words), or they 

may simply be abstract elements over which meaningful patterns can be defined. 

Processing units are often distinguished into input, output, and hidden units. In 

associative networks, input and output units have states that are defined by the task 

being modeled (at least during training), while hidden units are free parameters whose 

states may be determined as necessary by the learning algorithm. 

 The second feature is a state of activation (a) at a given time (t). The state of a 

set of units is usually represented by a vector of real numbers a(t). These may be 

binary or continuous numbers, bounded or unbounded. A frequent assumption is that 

the activation level of simple processing units will vary continuously between the 

values 0 and 1. 

 The third feature is a pattern of connectivity. The strength of the connection 

between any two units will determine the extent to which the activation state of one 

unit can affect the activation state of another unit at a subsequent time point. The 

strength of the connections between unit i and unit j can be represented by a matrix W 

of weight values wij. Multiple matrices may be specified for a given network if there 

are connections of different types. For example, one matrix may specify excitatory 

connections between units and a second may specify inhibitory connections. 
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Potentially, the weight matrix allows every unit to be connected to every other unit in 

the network. Typically, units are arranged into layers (e.g., input, hidden, output) and 

layers of units are fully connected to each other. For example, in a three-layer 

feedforward architecture where activation passes in a single direction from input to 

output, the input layer would be fully connected to the hidden layer and the hidden 

layer would be fully connected to the output layer. 

The fourth feature is a rule for propagating activation states throughout the 

network. This rule takes the vector a(t) of output values for the processing units 

sending activation and combines it with the connectivity matrix W to produce a 

summed or net input into each receiving unit. The net input to a receiving unit is 

produced by multiplying the vector and matrix together, so that  

( ) ∑=×=
j

jiji awtaWnet       (1) 

The fifth feature is an activation rule to specify how the net inputs to a given unit are 

combined to produce its new activation state. The function F derives the new 

activation state  

( ) ( )( )tnetFta ii =+1        (2) 

For example, F might be a threshold so that the unit becomes active only if the net 

input exceeds a given value. Other possibilities include linear, Gaussian, and sigmoid 

functions, depending on the network type. Sigmoid is perhaps the most common, 

operating as a smoothed threshold function that is also differentiable. It is often 

important that the activation function be differentiable because learning seeks to 

improve a performance metric that is assessed via the activation state while learning 

itself can only operate on the connection weights. The effect of weight changes on the 

performance metric therefore depends to some extent on the activation function, and 
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the learning algorithm encodes this fact by including the derivative of that function 

(see below). 

The sixth key feature of connectionist models is the algorithm for modifying 

the patterns of connectivity as a function of experience. Virtually all learning rules for 

PDP models can be considered a variant of the Hebbian learning rule (Hebb, 1949). 

The essential idea is that a weight between two units should be altered in proportion 

to the units’ correlated activity. For example, if a unit ui receives input from another 

unit uj, then if both are highly active, the weight wij from uj to ui should be 

strengthened. In its simplest version, the rule is  

jiij aaw η=Δ         (3) 

where η is the constant of proportionality known as the learning rate. Where an 

external target activation ti(t) is available for a unit i at time t, this algorithm is 

modified by replacing ai with a term depicting the disparity of unit ui’s current 

activation state ai(t) from its desired activation state ti(t) at time t, so forming the delta 

rule: 

( ) ( )( ) jiiij atattw −=Δ η       (4) 

However, when hidden units are included in networks, no target activation is available 

for these internal parameters. The weights to such units may be modified by variants 

of the Hebbian learning algorithm (e.g., Contrastive Hebbian; Hinton, 1989; see Xie 

& Seung, 2003) or by the backpropagation of error signals from the output layer.  

Backpropagation makes it possible to determine, for each connection weight 

in the network, what effect a change in its value would have on the overall network 

error.  The policy for changing the strengths of connections is simply to adjust each 

weight in the direction (up or down) that would tend to reduce the error, by an amount 

proportional to the size of the effect the adjustment will have. If there are multiple 
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layers of hidden units remote from the output layer, this process can be followed 

iteratively: first error derivatives are computed for the hidden layer nearest the output 

layer; from these, derivatives are computed for the next deepest layer into the 

network, and so forth. On this basis, the backpropagation algorithm serves to modify 

the pattern of weights in powerful multilayer networks. It alters the weights to each 

deeper layer of units in such a way as to reduce the error on the output units (see 

Rumelhart, Hinton, & Williams, 1986, for the derivation). We can formulate the 

weight change algorithm by analogy to the delta rule in shown in equation 4. For each 

deeper layer in the network, we modify the central term that represents the disparity 

between the actual and target activation of the units. Assuming ui, uh, and uo are input, 

hidden, and output units in a 3-layer feedforward network, the algorithm for changing 

the weight from hidden to output unit is: 

( ) ( ) hooooh anetFatw '−=Δ η       (5) 

where ( )netF '  is the derivative of the activation function of the units (e.g., for the 

sigmoid activation function, ( ) ( )ooo aanetF −= 1' ). The term (to – ao) is proportional to 

the negative of the partial derivative of the network’s overall error with respect to the 

activation of the output unit, where the error E is given by ( )∑ −=
o

oo atE 2 . 

The derived error term for a unit at the hidden layer is based on the derivative 

of the hidden unit’s activation function, times the sum across all the connections from 

that hidden unit to the output later of the error term on each output unit weighted by 

the derivative of the output unit’s activation function ( ) ( )ooo netFat '−  times the 

weight connecting the hidden unit to the output unit: 

 ( ) ( ) ( )∑ −
o ohoooh wnetFatnetF ''      (6) 

The algorithm for changing the weights from the input to the hidden layer is therefore: 
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( ) ( ) ( ) io ohooohhi awnetFatnetFw ∑ −=Δ ''η    (7) 

It is interesting that the above computation can be construed as a backward pass 

through the network, similar in spirit to the forward pass that computes activations in 

that it involves propagation of signals across weighted connections, this time from the 

output layer back toward the input.  The backward pass, however, involves the 

propagation of error derivatives rather than activations. 

 It should be emphasized that a very wide range of variants and extensions of 

Hebbian and error-correcting algorithms have been introduced in the connectionist 

learning literature. Most importantly, several variants of backpropagation have been 

developed for training recurrent networks (Williams & Zipser, 1995); and several 

algorithms (including the Contrastive Hebbian Learning algorithm and O’Reilly’s 

1998 LEABRA algorithm) have addressed some of the concerns that have been raised 

regarding the biological plausibility of backpropagation construed in its most literal 

form (O’Reilly & Munakata, 2000). 

The last general feature of connectionist networks is a representation of the 

environment with respect to the system. This is assumed to consist of a set of 

externally provided events or a function for generating such events. An event may be 

a single pattern, such as a visual input; an ensemble of related patterns, such as the 

spelling of a word and its corresponding sound and/or meaning; or a sequence of 

inputs, such as the words in a sentence. A range of policies have been used for 

specifying the order of presentation of the patterns, including sweeping through the 

full set to random sampling with replacement. The selection of patterns to present 

may vary over the course of training but is often fixed. Where a target output is linked 

to each input, this is usually assumed to be simultaneously available. Two points are 

of note in the translation between PDP network and cognitive model. First, a 
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representational scheme must be defined to map between the cognitive domain of 

interest and a set of vectors depicting the relevant informational states or mappings 

for that domain. Second, in many cases, connectionist models are addressed to aspects 

of higher-level cognition, where it is assumed that the information of relevance is 

more abstract than sensory or motor codes. This has meant that the models often leave 

out details of the transduction of sensory and motor signals, using input and output 

representations that are already somewhat abstract. We hold the view that the same 

principles at work in higher-level cognition are also at work in perceptual and motor 

systems, and indeed there is also considerable connectionist work addressing issues of 

perception and action, though these will not be the focus of the present article. 

 

2.3 Neural plausibility 

It is a historical fact that most connectionist modelers have drawn their inspiration 

from the computational properties of neural systems. However, it has become a point 

of controversy whether these ‘brain-like’ systems are indeed neurally plausible. If 

they are not, should they instead be viewed as a class of statistical functional 

approximators? And if so, shouldn’t the ability of these models to simulate patterns of 

human behavior be assessed in the context of the large number of free parameters they 

contain (e.g., in the weight matrix) (Green, 1998)? 

Neural plausibility should not be the primary focus for a consideration of 

connectionism. The advantage of connectionism, according to its proponents, is that it 

provides better theories of cognition. Nevertheless, we will deal briefly with this issue 

since it pertains to the origins of connectionist cognitive theory. In this area, two sorts 

of criticism have been leveled at connectionist models. The first is to maintain that 

many connectionist models either include properties that are not neurally plausible 
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and/or omit other properties that neural systems appear to have. Some connectionist 

researchers have responded to this first criticism by endeavoring to show how features 

of connectionist systems might in fact be realized in the neural machinery of the 

brain. For example, the backward propagation of error across the same connections 

that carry activation signals is generally viewed as biologically implausible. However, 

a number of authors have shown that the difference between activations computed 

using standard feedforward connections and those computed using standard return 

connections can be used to derive the crucial error derivatives required by 

backpropagation (Hinton & McClelland, 1988; O’Reilly, 1996). It is widely held that 

connections run bi-directionally in the brain, as required for this scheme to work. 

Under this view, backpropagation may be shorthand for a Hebbian-based algorithm 

that uses bi-directional connections to spread error signals throughout a network (Xie 

& Seung, 2003). 

Other connectionist researchers have responded to the first criticism by 

stressing the cognitive nature of current connectionist models. Most of the work in 

developmental neuroscience addresses behavior at levels no higher than cellular and 

local networks, whereas cognitive models must make contact with the human 

behavior studied in psychology. Some simplification is therefore warranted, with 

neural plausibility compromised under the working assumption that the simplified 

models share the same flavor of computation as actual neural systems. Connectionist 

models have succeeding in stimulating a great deal of progress in cognitive theory – 

and sometimes generating radically different proposals to the previously prevailing 

symbolic theory – just given the set of basic computational features outlined in the 

preceding section. 
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 The second type of criticism leveled at connectionism questions why, as 

Davies (2005) puts it, connectionist models should be reckoned any more plausible as 

putative descriptions of cognitive processes just because they are ‘brain-like’. Under 

this view, there is independence between levels of description because a given 

cognitive level theory might be implemented in multiple ways in different hardware. 

Therefore the details of the hardware (in this case, the brain) need not concern the 

cognitive theory. This functionalist approach, most clearly stated in Marr’s three 

levels of description (computational, algorithmic, and implementational; see Marr, 

1982) has been repeatedly challenged (see, e.g., Rumelhart & McClelland, 1985; 

Mareschal et al., 2007). The challenge to Marr goes as follows. While, according to 

computational theory, there may be a principled independence between a computer 

program and the particular substrate on which it is implemented, in practical terms, 

different sorts of computation are easier or harder to implement on a given substrate. 

Since computations have to be delivered in real time as the individual reacts with his 

or her environment, in the first instance cognitive level theories should be constrained 

by the computational primitives that are most easily implemented on the available 

hardware; human cognition should be shaped by the processes that work best in the 

brain. 

 The relation of connectionist models to symbolic models has also proved 

controversial. A full consideration of this issue is beyond the scope of the current 

chapter. Suffice to say that because the connectionist approach now includes a diverse 

family of models, there is no single answer to this question. Smolensky (1988) argued 

that connectionist models exist at a lower (but still cognitive) level of description than 

symbolic cognitive theories, a level that he called the sub-symbolic. Connectionist 

models have sometimes been put forward as a way to implement symbolic production 
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systems on neural architectures (e.g., Touretzky & Hinton, 1988). At other times, 

connectionist researchers have argued that their models represent a qualitatively 

different form of computation: while under certain circumstances, connectionist 

models might produce behavior approximating symbolic processes, it is held that 

human behavior, too, only approximates the characteristics of symbolic systems rather 

than directly implementing them. Furthermore, connectionist systems incorporate 

additional properties characteristic of human cognition, such as content addressable 

memory, context-sensitive processing, and graceful degradation under damage or 

noise. Under this view, symbolic theories are approximate descriptions rather than 

actual characterizations of human cognition. Connectionist theories should replace 

them because they both capture subtle differences between human behavior and 

symbolic characterizations, and because they provide a specification of the underlying 

causal mechanisms (van Gelder, 1991). 

This strong position has prompted criticisms that in their current form, 

connectionist models are insufficiently powerful to account for certain aspects of 

human cognition – in particular those areas best characterized by symbolic, 

syntactically driven computations (Fodor & Pylyshyn, 1988; Marcus, 2001). Again, 

however, the characterization of human cognition in such terms is highly 

controversial; close scrutiny of relevant aspects of language – the ground on which 

the dispute has largely been focused – lends support to the view that the systematicity 

assumed by proponents of symbolic approaches is overstated, and that the actual 

characteristics of language are well matched to the characteristics of connectionist 

systems (Bybee & McClelland, 2005; McClelland, Plaut, Gotts & Maia, 2003). In the 

end, it may be difficult to make principled distinctions between symbolic and 

connectionist models. At a fine scale, one might argue that two units in a network 



 17

represent variables and the connection between them specifies a symbolic rule linking 

these variables. One might also argue that a production system in which rules are 

allowed to fire probabilistically and in parallel begins to approximate a connectionist 

system. 

 

2.4 The relationship between connectionist models and Bayesian inference 

Since the early 1980s, it has been apparent that there are strong links between the 

calculations carried out in connectionist models and key elements of Bayesian 

calculations. The state of the early literature on this point was reviewed in McClelland 

(1998). There it was noted, first of all, that units can be viewed as playing the role of 

probabilistic hypotheses; that weights and biases play the role of conditional 

probability relations between hypotheses and prior probabilities, respectively; and that 

if connection weights and biases have the correct values, the logistic activation 

function sets the activation of a unit to its posterior probability given the evidence 

represented on its inputs. A second and more important observation is that, in 

stochastic neural networks (Boltzmann Machines and Continuous Diffusion 

Networks; Hinton & Sejnowski, 1986; Movellan & McClelland, 1993) a network’s 

state over all of its units can represent a constellation of hypotheses about an input; 

and (if the weights and the biases are set correctly) that the probability of finding the 

network in a particular state is monotonically related to the probability that the state is 

the correct interpretation of the input. The exact nature of the relation depends on a 

parameter called temperature; if set to one, the probability that the network will be 

found in a particular state exactly matches its posterior probability. When temperature 

is gradually reduced to zero, the network will end up in the most probable state, thus 

performing optimal perceptual inference (Hinton & Sejnowski, 1983). It is also 
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known that backpropagation can learn weights that allow Bayes-optimal estimation of 

outputs given inputs (MacKay, 1993) and that the Boltzmann machine learning 

algorithm (Ackley, Hinton, & Sejnowski, 1986; Movellan & McClelland, 1993) can 

learn to produce correct conditional distributions of outputs given inputs. The 

algorithm is slow but there has been recent progress producing substantial speedups 

that achieve outstanding performance on benchmark data sets (Hinton, Osindero & 

Teh, 2006).
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3. Three illustrative models 

In this section, we outline three of the landmark models in the emergence of 

connectionist theories of cognition. The models serve to illustrate the key principles 

of connectionism and demonstrate how these principles are relevant to explaining 

behavior in ways that are different from other prior approaches. The contribution of 

these models was twofold: they were better suited than alternative approaches to 

capturing the actual characteristics of human cognition, usually on the basis of their 

context sensitive processing properties; and compared to existing accounts, they 

offered a sharper set of tools to drive theoretical progress and to stimulate empirical 

data collection. Each of these models significantly advanced its field. 

 

3.1 An interactive activation model of context effects in letter perception 

(McClelland & Rumelhart, 1981, 1982) 

The interactive activation model of letter perception illustrates two interrelated ideas. 

The first is that connectionist models naturally capture a graded constraint satisfaction 

process in which the influences of many different types of information are 

simultaneously integrated in determining, for example, the identity of a letter in a 

word. The second idea is that the computation of a perceptual representation of the 

current input (in this case, a word) involves the simultaneous and mutual influence of 

representations at multiple levels of abstraction – this is a core idea of parallel 

distributed processing. 

The interactive activation model addressed itself to a puzzle in word 

recognition. By the late 1970s, it had long been known that people were better at 

recognizing letters presented in words than letters presented in random letter 

sequences. Reicher (1969) demonstrated that this was not the result of tending to 
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guess letters that would make letter strings into words. He presented target letters 

either in words, unpronounceable nonwords, or on their own. The stimuli were then 

followed by a pattern mask, after which participants were presented with a forced 

choice between two letters in a given position. Importantly, both alternatives were 

equally plausible. Thus, the participant might be presented with WOOD and asked 

whether the third letter was O or R. As expected, forced-choice performance was 

more accurate for letters in words than for letters in nonwords or presented on their 

own. Moreover, the benefit of surrounding context was also conferred by 

pronounceable pseudowords (e.g., recognizing the P in SPET) compared to random 

letter strings, suggesting that subjects were able to bring to bear rules regarding the 

orthographic legality of letter strings during recognition. 

 Rumelhart and McClelland took the contextual advantage of words and 

pseudowords on letter recognition to indicate the operation of top-down processing. 

Previous theories had put forward the idea that letter and word recognition might be 

construed in terms of detectors which collect evidence consistent with the presence of 

their assigned letter or word in the input (Morton, 1969; Selfridge, 1959). Influenced 

by these theories, Rumelhart and McClelland built a computational simulation in 

which the perception of letters resulted from excitatory and inhibitory interactions of 

detectors for visual features. Importantly, the detectors were organized into different 

layers for letter features, letters and words, and detectors could influence each other 

both in a bottom-up and a top-down manner. 

 Figure 2 illustrates the structure of the Interactive Activation (IA) model, both 

at the macro level (left) and for a small section of the model at a finer level (right). 

The explicit motivation for the structure of the IA was neural: ‘[We] have adopted the 

approach of formulating the model in terms similar to the way in which such a 
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process might actually be carried out in a neural or neural-like system’ (McClelland & 

Rumelhart, 1981, p.387). There were three main assumptions of the IA model: (1) 

perceptual processing takes place in a system in which there are several levels of 

processing, each of which forms a representation of the input at a different level of 

abstraction; (2) visual perception involves parallel processing, both of the four letters 

in each word and of all levels of abstraction simultaneously; (3) perception is an 

interactive process in which conceptually driven and data driven processing provide 

multiple, simultaneously acting constraints that combine to determine what is 

perceived. 

The activation states of the system were simulated by a sequence of discrete 

time steps. Each unit combined its activation on the previous time step, its excitatory 

influences, its inhibitory influences, and a decay factor to determine its activation on 

the next time step. Connectivity was set at unitary values and along the following 

principles: in each layer, mutually exclusive alternatives should inhibit each other. For 

each unit in a layer, it excited all units with which it was consistent and inhibited all 

those with which it was inconsistent in layer immediately above. Thus in Figure 2, the 

1st-position W letter unit has an excitatory connection to the WEED word unit but an 

inhibitory connection to the SEED and FEED word units. Similarly, a unit excited all 

units with which it was consistent and inhibited all those with which it was 

inconsistent in the layer immediately below. However, in the final implementation, 

top-down word-to-letter inhibition and within-layer letter-to-letter inhibition were set 

to zero (gray arrows, Figure 2). 
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Figure 2. Interactive Activation model of context effects in letter recognition 

(McClelland & Rumelhart, 1981, 1982). Pointed arrows are excitatory connections, 

circular headed arrows are inhibitory connections. Left: macro view (connections in 

gray were set to zero in implemented model). Right: micro view for the connections 

from the feature level to the first letter position for the letters S, W, and F (only 

excitatory connections shown) and from the first letter position to the word units 

SEED, WEED, and FEED (all connections shown). 
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of possible letters was duplicated for each letter position, and a set of 1,179 word 

units created to represent the corpus of 4-letter words. Word units were given base 

rate activation states at the beginning of processing to reflect their different 

frequencies. A trial began by clamping the feature units to the appropriate states to 

represent a letter string, and then observing the dynamic change in activation through 

the network. Conditions were included to allow the simulation of stimulus masking 

WORD LEVEL 

LETTER LEVEL 

FEATURE LEVEL 

VISUAL INPUT 

SEED 

FEED 

WEED 

S
F

W



 23

and degraded stimulus quality. Finally, a probabilistic response mechanism was added 

to generate responses from the letter level, based on the relative activation states of 

the letter pool in each position. 

The model successfully captured the greater accuracy of letter detection for 

letters appearing in words and pseudowords compared to random strings or in 

isolation. Moreover, it simulated a variety of empirical findings on the effect of 

masking and stimulus quality, and of changing the timing of the availability of 

context. The results on the contextual effects of pseudowords are particularly 

interesting, since the model only contains word units and letter units and has no 

explicit representation of orthographic rules. Let us say on a given trial, the subject is 

required to recognize the 2nd letter in the string SPET. In this case, the string will 

produce bottom-up excitation of the word units for SPAT, SPIT, and SPOT, which 

each share three letters. In turn, the word units will propagation top-down activation 

reinforcing activation of the letter P and so facilitating its recognition. Were this letter 

to be presented in the string XPQJ, no word units could offer similar top-down 

activation, hence the relative facilitation of the pseudoword. Interestingly, although 

these top-down ‘gang’ effects produced facilitation of letters contained in 

orthographically legal nonword strings, the model demonstrated that they also 

produced facilitation in orthographically illegal, unpronounceable letter strings such 

as SPCT. Here, the same gang of SPAT, SPIT, and SPOT produce top-down support. 

Rumelhart and McClelland (1982) reported empirical support for this novel 

prediction. Therefore, although the model behaved as if it contained orthographic 

rules influencing recognition, it did not in fact do so, because continued contextual 

facilitation could be demonstrated for strings that had gang support but violated the 

orthographic rules. 
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There are two specific points to note regarding the IA model. First, this early 

connectionist model was not adaptive – connectivity was set by hand. While the 

model’s behavior was shaped by the statistical properties of the language it processed, 

these properties were built into the structure of the system, in terms of the frequency 

of occurrence of letters and letter combinations in the words. Second, the idea of 

bottom-up excitation followed by competition amongst mutually exclusive 

possibilities is a strategy familiar in Bayesian approaches to cognition. In that sense, 

the IA bears similarity to more recent probability theory based approaches to 

perception.  

 

What happened next? 

Subsequent work saw the principles of the IA model extended to the recognition of 

spoken words (the TRACE model: McClelland & Elman, 1986) and more recently to 

bilingual speakers where two languages must be incorporated in a single 

representational system (see Thomas & van Heuven, 2005, for review). The 

architecture was applied to other domains where multiple constraints were thought to 

operate during perception, for example in face recognition (Burton, Bruce, & 

Johnston, 1990). Within language, more complex architectures have tried to recast the 

principles of the IA model in developmental settings, such as Plaut and Kello’s (1999) 

model of the emergence of phonology from the interplay of speech comprehension 

and production. 

The more general lesson to draw from the interactive activation model is the 

demonstration of multiple influences (feature, letter, and word-level knowledge) 

working simultaneously and in parallel to shape the response of the system; and the 

somewhat surprising finding that a massively parallel constraint satisfaction process 
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of this form can appear to behave as if it contains rules (in this case, orthographic) 

when no such rules are included in the processing structure. At the time, the model 

brought into question whether it was necessary to postulate rules as processing 

structures to explain regularities in human behavior. This skepticism was brought into 

sharper focus by our next example. 

 

3.2 On learning the past tense of English verbs (Rumelhart & McClelland, 1986) 

Rumelhart and McClelland’s (1986) model of English past tense formation marked 

the real emergence of the PDP framework. Where the IA model used localist coding, 

the past tense model employed distributed coding. Where the IA model had 

handwired connection weights, the past tense model learned its weights via repeated 

exposure to a problem domain. However, the models share two common themes. 

Once more, the behavior of the past model will be driven by the statistics of the 

problem domain, albeit these will be carved into the model by training rather than 

sculpted by the modelers. Perhaps more importantly, we see a return to the idea that a 

connectionist system can exhibit rule-following behavior without containing rules as 

causal processing structures; but in this case, the rule-following behavior will be the 

product of learning and will accommodate a proportion of exception patterns that do 

not follow the general rule. The key point that the past tense model illustrates is how 

(approximate) conformity to the regularities of language – and even a tendency to 

produce new regular forms (e.g., regularizations like ‘thinked’ or past tenses for novel 

verbs like ‘wugged’) – can arise in a connectionist network without an explicit 

representation of a linguistic rule. 

 The English past tense is characterized by a predominant regularity in which 

the majority of verbs form their past tenses by the addition of one of three allomorphs 
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of the ‘-ed’ suffix to the base stem (walk/walked, end/ended, chase/chased). However, 

there is a small but significant group of verbs which form their past tense in different 

ways, including changing internal vowels (swim/swam), changing word final 

consonants (build/built), changing both internal vowels and final consonants 

(think/thought), an arbitrary relation of stem to past tense (go/went), and verbs which 

have a past tense form identical to the stem (hit/hit). These so-called irregular verbs 

often come in small groups sharing a family resemblance (sleep/slept, creep/crept, 

leap/leapt) and usually have high token frequencies (see Pinker, 1999, for further 

details). 

During the acquisition of the English past tense, children show a characteristic 

U-shaped developmental profile at different times for individual irregular verbs. 

Initially they use the correct past tense of a small number of high frequency regular 

and irregular verbs. Latterly, they sometimes produce ‘overregularized’ past tense 

forms for a small fraction of their irregular verbs (e.g., thinked) (Marcus, Pinker, 

Ullman, Hollander, Rosen, & Xu, 1992), along with other, less frequent errors (Xu & 

Pinker, 1995). They are also able to extend the past tense ‘rule’ to novel verbs (e.g., 

wug-wugged). Finally, in older children, performance approaches ceiling on both 

regular and irregular verbs (Berko, 1958; Ervin, 1964; Kuczaj, 1977). 

In the early 1980s, it was held that this pattern of behavior represented the 

operation of two developmental mechanisms (Pinker, 1984). One of these was 

symbolic and served to learn the regular past tense ‘rule’, while the other was 

associative and served to learn the exceptions to the rule. The extended phase of 

overregularization errors corresponded to difficulties in integrating the two 

mechanisms, specifically a failure of the associative mechanism to block the function 

of the symbolic mechanism. That the child comes to the language acquisition situation 
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armed with these two mechanisms (one of them full of blank rules) was an a priori 

commitment of the developmental theory. 

By contrast, Rumelhart and McClelland (1986) proposed that a single network 

that does not distinguish between regular and irregular past tenses is sufficient to learn 

past tense formation. The architecture of their model is shown in Figure 3. A 

phoneme-based representation of the verb root was recoded into a more distributed, 

coarser (more blurred) format, which they called ‘Wickelfeatures’. The stated aim of 

this recoding was to produce a representation that (a) permitted differentiation of all 

of the root forms of English and their past tenses, and (b) provided a natural basis for 

generalizations to emerge about what aspects of a present tense correspond to what 

aspects of a past tense. This format involved representing verbs over 460 processing 

units. A two-layer network was then used to associate the Wickelfeature 

representations of the verb root and past tense form. A final decoding network was 

then used to derive the closest phoneme-based rendition of the past tense form and 

reveal the model’s response (the decoding part of the model was somewhat restricted 

by computer processing limitations of the machines available at the time). 

The connection weights in the two-layer network were initially randomized. 

The model was then trained in three phases, in each case using the delta rule to update 

the connection weights after each verb root / past tense pair was presented (see 

Section 1.2). In Phase 1, the network was trained on 10 high frequency verbs, 2 

regular and 8 irregular, in line with the greater proportion of irregular verbs amongst 

the most frequent verbs in English. Phase 1 lasted for 10 presentations of the full 

training set (or ‘epochs’). In Phase 2, the network was trained on 410 medium 

frequency verbs, 334 regular and 76 irregular, for a further 190 epochs. In Phase 3, no 

further training took place, but 86 lower frequency verbs were presented to the 
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network to test its ability to generalize its knowledge of the past tense domain to 

novel verbs.  

 

Figure 3. Two-layer network for learning the mapping between the verb roots and past 

tense forms of English verbs (Rumelhart & McClelland, 1986). Phonological 

representations of verbs are initially encoded into a coarse, distributed 

‘Wickelfeature’ representation. Past tenses are decoded from the Wickelfeature 

representation back to the phonological form. Later connectionist models replaced the 

dotted area with a three-layer feedforward backpropagation network (e.g., Plunkett & 

Marchman, 1991, 1993). 
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to the distinction between regular and irregular verbs. Second, it captured the overall 

pattern of faster acquisition for regular verbs than irregular verbs, a predominant 

feature of children’s past tense acquisition. Third, the model captured the U-shaped 

profile of development: an early phase of accurate performance on a small set of 

regular and irregular verbs, followed by a phase of overregularization of the irregular 

forms, and finally recovery for the irregular verbs and performance approaching 

ceiling on both verb types. Fourth, when the model was presented with the low-

frequency verbs on which it had not been trained, it was able to generalize the past 

tense rule to a substantial proportion of them, as if it had indeed learned a rule. 

Additionally, the model captured more fine-grained developmental patterns for 

subsets of regular and irregular verbs, and generated several novel predictions. 

Rumelhart and McClelland explained the generalization abilities of the 

network in terms of the superpositional memory of the two-layer network. All the 

associations between the distributed encodings of verb root and past tense forms must 

be stored across the single matrix of connection weights. As a result, similar patterns 

blend into one another and reinforce each other. Generalization is contingent on the 

similarity of verbs at input. Were the verbs to be presented using an orthogonal, 

localist scheme (e.g., 420 units, 1 per verb), then there would be no similarity between 

the verbs, no blending of mappings, no generalization, and therefore no regularization 

of novel verbs. As the authors state, ‘it is the statistical relationships among the base 

forms themselves that determine the pattern of responding. The network merely 

reflects the statistics of the featural representations of the verb forms’ (p. 267). Based 

on the model’s successful simulation of the profile of language development in this 

domain and, compared to the dual mechanism model, its more parsimonious a priori 

commitments, Rumelhart and McClelland viewed their work on past tense 
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morphology as a step towards a revised understanding of language knowledge, 

language acquisition, and linguistic information processing in general.  

The past tense model stimulated a great deal of subsequent debate, not least 

because of its profound implications for theories of language development (no rules!). 

The model was initially subjected to concentrated criticism. Some of this was 

overstated – for instance, the use of domain-general learning principles (such as 

distributed representation, parallel processing, and the delta rule) to acquire the past 

tense in a single network was interpreted as a claim that all of language acquisition 

could be captured by the operation of a single domain-general learning mechanism. 

Such an absurd claim could be summarily dismissed. However, as it stood, the model 

made no such claim: its generality was in the processing principles. The model itself 

represented a domain-specific system dedicated to learning a small part of language. 

Nevertheless, a number of the criticisms were more telling: the Wickelfeature 

representational format was not psycholinguistically realistic; the generalization 

performance of the model was relatively poor; the U-shaped developmental profile 

appeared to be a result of abrupt changes in the composition of the training set; and 

the actual response of the model was hard to discern because of problems in decoding 

the Wickelfeature output into a phoneme string (Pinker & Prince, 1988). 

The criticisms and following rejoinders were interesting in a number of ways. 

First, there was a stark contrast between the precise, computationally implemented 

connectionist model of past tense formation and the verbally specified dual-

mechanism theory (e.g., Marcus, Pinker, Ullman, Hollander, Rosen, & Xu, 1992). 

The implementation made simplifications but was readily evaluated against 

quantitative behavioral evidence; it made predictions and it could be falsified. The 

verbal theory by contrast was vague – it was hard to know how or whether it would 
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work or exactly what behaviors its predicted (see Thomas et al., 2006, for discussion). 

Therefore it could only be evaluated on loose qualitative grounds. Second, the model 

stimulated a great deal of new multidisciplinary research in the area. Today, 

inflectional morphology (of which past tense is a part) is one of the most studied 

aspects of language processing in children, in adults, in second language learners, in 

adults with acquired brain damage, in children and adults with neurogenetic disorders, 

and in children with language impairments, using psycholinguistic methods, event-

related potential measures of brain activity, functional magnetic resonance imaging, 

and behavioral genetics . . . This rush of science illustrates the essential role of 

computational modeling in driving forward theories of human cognition. Third, 

further modifications and improvements to the past tense model have highlighted how 

researchers go about the difficult task of understanding which parts of their model 

represent the key theoretical claims and which are implementational details. 

Simplification is inherent to modeling but successful modeling relies on making the 

right simplifications to focus on the process of interest. For example, in subsequent 

models, the Wickelfeature representation was replaced by more plausible phonemic 

representations based on articulatory features; the recoding/two-layer-

network/decoding component of the network (the dotted rectangle in Figure 3) that 

was trained with the delta rule was replaced by a three-layer feedforward network 

trained with the backpropagation algorithm; and the U-shaped developmental profile 

was demonstrated in connectionist networks trained with a smoothly growing training 

set of verbs or even with a fixed set of verbs (see, e.g., Plunkett & Marchman, 1991, 

1993, 1996). 
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What happened next? 

The English past tense model prompted further work within inflectional morphology 

in other languages (e.g., pluralization in German: Goebel & Indefrey, 2000; 

pluralization in Arabic: Plunkett & Nakisa, 1999), as well as models that explored the 

possible causes of deficits in acquired and developmental disorders such as aphasia, 

Specific Language Impairment and Williams syndrome (e.g., Hoeffner & McClelland, 

1993; Joanisse & Seidenberg, 1999; Thomas & Karmiloff-Smith, 2003a; Thomas, 

2005). The idea that rule-following behavior could emerge in a developing system 

that also had to accommodate exceptions to the rules was also successfully pursued 

via connectionist modeling in the domain of reading (e.g., Plaut et al., 1996). This led 

to work that also considered various forms of acquired and developmental dyslexia. 

For the past tense itself, there remains much interest in the topic as a crucible 

to test theories of language development. However, in some senses the debate 

between connectionist and dual-mechanism accounts has ground to a halt. There is 

much evidence from child development, adult cognitive neuropsychology, 

developmental neuropsychology, and functional brain imaging to suggest partial 

dissociations between performance on regular and irregular inflection under various 

conditions. Both connectionist and dual-mechanism models have been modified: the 

connectionist model to include the influence of lexical-semantics as well as verb root 

phonology in driving the production of the past tense form (Joanisse & Seidenberg, 

1999; Thomas & Karmiloff-Smith, 2003a); the dual-mechanism model to suppose 

that regular verbs might also be stored in the associative mechanism, thereby 

introducing partial redundancy of function (Pinker, 1999). Both approaches now 

accept that performance on regular and irregular past tenses partly indexes different 

things – in the connectionist account, different underlying knowledge, in the dual-
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mechanism account, different underlying processes. In the connectionist theory, 

performance on regular verbs indexes reliance on knowledge about phonological 

regularities while performance on irregular verbs indexes reliance on lexical-semantic 

knowledge. In the dual-mechanism theory, performance on regular verbs indexes a 

dedicated symbolic processing mechanism implementing the regular ‘rule’ while 

performance on irregular verbs indexes an associative memory device storing 

information about the past tense forms of specific verbs. Both approaches claim to 

account for the available empirical evidence. However, to date, the dual-mechanism 

remains unimplemented, so its claim is weaker. 

How does one distinguish between two theories that (a) both claim to explain 

the data but (b) contain different representational assumptions? Putting aside the 

different level of detail of the two theories, the answer is that it depends on one’s 

preference for consistency with other disciplines. The dual-mechanism theory 

declares consistency with linguistics – if rules are required to characterize other 

aspects of language performance (such as syntax), then one might as well include 

them in a model of past tense formation. The connectionist theory declares 

consistency with neuroscience – if the language system is going to be implemented in 

the brain, then one might as well employ a computational formulism based on how 

neural networks function. 

Finally, we return to the more general connectionist principle illustrated by the 

past tense model. So long as there are regularities in the statistical structure of a 

problem domain, a massively parallel constraint satisfaction system can learn these 

regularities and extend them to novel situations. Moreover, as with humans, the 

behavior of the system is flexible and context sensitive – it can accommodate 

regularities and exceptions within a single processing structure. 
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3.3 Finding Structure in Time (Elman, 1990) 

In this section, we introduce the notion of the simple recurrent network and its 

application to language. As with past tense, the key point of the model will be to show 

how conformity to regularities of language can arise without an explicit representation 

of a linguistic rule. Moreover, the following simulations will demonstrate how 

learning can lead to the discovery of useful internal representations that capture 

conceptual and linguistic structure on the basis of the co-occurrences of words in 

sentences. 

The IA model exemplified connectionism’s commitment to parallelism: all of 

the letters of the word presented to the network were recognized in parallel and 

processing occurred simultaneously at different levels of abstraction. But not all 

processing can be carried out in this way. Some human behaviors intrinsically revolve 

around temporal sequences. Language, action planning, goal-directed behavior, and 

reasoning about causality are examples of domains that rely on events occurring in 

sequences. How has connectionism addressed the processing of temporally unfolding 

events? One solution was offered in the TRACE model of spoken word recognition 

(McClelland & Elman, 1986) where a word was specified as a sequence of phonemes. 

In that case, the architecture of the system was duplicated for each time slice and the 

duplicates wired together. This allowed constraints to operate over items in the 

sequence to influence recognition. In other models, a related approach was used to 

convert a temporally extended representation into a spatially extended one. For 

example, in the past tense model, all the phonemes of a verb were presented across 

the input layer. This could be viewed as a sequence if one assumed that the 

representation of the first phoneme represents time slice t, the representation of the 
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second phoneme represents time slice t+1, and so on. As part of a comprehension 

system, this approach assumes a buffer that can take sequences and convert them to a 

spatial vector. However, this solution is fairly limited, as it necessarily pre-commits to 

the size of the sequences that can be processed at once (i.e., the size of the input 

layer). 

 Elman (1990, 1991) offered an alternative and more flexible approach to 

processing sequences, proposing an architecture that has been extremely influential 

and much used since. Elman drew on the work of Jordan (1986) who had proposed a 

model that could learn to associate a ‘plan’ (i.e., a single input vector) with a series of 

‘actions’ (i.e., a sequence of output vectors). Jordan’s model contained recurrent 

connections permitting the hidden units to ‘see’ the network’s previous output (via a 

set of ‘state’ input units that are given a copy of the previous output). The facility for 

the network to shape its next output according to its previous response constitutes a 

kind of memory. Elman’s innovation was to build a recurrent facility into the internal 

units of the network, allowing it to compute statistical relationships across sequences 

of inputs and outputs. To achieve this, first time is discretized into a number of slices. 

On time step t, an input is presented to the network and causes a pattern of activation 

on hidden and output layers. On time step t+1, the next input in the sequence of 

events is presented to the network. However, crucially, a copy of the activation of the 

hidden units on time step t is transmitted to a set of internal ‘context’ units. This 

activation vector is also fed to the hidden units on time step t+1. Figure 4 shows the 

architecture, known as the simple recurrent network (SRN). It is usually trained with 

the backpropagation algorithm (see Section 2.3) as a multi-layer feedforward network, 

ignoring the origin of the information on the context layer. 
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Figure 4. Elman’s simple recurrent network architecture for finding structure in time 

(Elman, 1991, 1993). Connections between input and hidden, context and hidden, and 

hidden and output layers are trainable. Sequences are applied to the network element 

by element in discrete time steps; the context layer contains a copy of the hidden unit 

activations on the previous time step transmitted by fixed, 1-to-1 connections. 
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(the input at t+2 (shaped by the input at t+1 (shaped by the input at t))) 

The recursive flavor of the information contained in the context layer means that each 

new input is processed in the context of the full history of previous inputs. This 

permits the network to learn statistical relationships across sequences of inputs or, in 

other words, to find structure in time. 

In his original paper of 1990, Elman demonstrated the powerful properties of 

the SRN with two examples. In the first, the network was presented with a sequence 

of letters made up of concatenated words, e.g.: 

 

MANYYEARSAGOABOYANDGIRLLIVEDBYTHESEATHEYPLAYEDHAPPIL 

 

Each letter was represented by a distributed binary code over 5 input units. The 

network was trained to predict the next letter in the sentence for 200 sentences 

constructed from a lexicon of 15 words. There were 1,270 words and 4,963 letters. 

Since each word appeared in many sentences, the network was not particularly 

successful at predicting the next letter when it got to the end of each word, but within 

a word it was able to predict the sequences of letters. Using the accuracy of prediction 

as a measure, one could therefore identify which sequences in the letter string were 

words: they were the sequences of good prediction bounded by high prediction errors. 

The ability to extract words was of course subject to the ambiguities inherent in the 

training set (e.g., for the and they, there is ambiguity after the 3rd letter). Elman 

suggested that if the letter strings are taken to be analogous to the speech sounds 

available to the infant, the SRN demonstrates a possible mechanism to extract words 

from the continuous stream of sound that is present in infant-directed speech. Elman’s 

work has contributed to the increasing interest in the statistical learning abilities of 
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young children in language and cognitive development (see, e.g., Saffran, Newport, & 

Aslin, 1996). 

In the second example, Elman created a set of 10,000 sentences by combining 

a lexicon of 29 words and a set of short sentence frames (noun + [transitive] verb + 

noun; noun + [intransitive] verb). There was a separate input and output unit for each 

word and the SRN was trained to predict the next word in the sentence. During 

training, the network’s output came to approximate the transitional probabilities 

between the words in the sentences – that is, it could predict the next word in the 

sentences as much as this was possible. Following the first noun, the verb units would 

be more active as the possible next word, and verbs that tended to be associated with 

this particular noun would be more active than those that did not. At this point, Elman 

examined the similarity structure of the internal representations to discover how the 

network was achieving its prediction ability. He found that the internal representations 

were sensitive to the difference between nouns and verbs, and within verbs, to the 

difference between transitive and intransitive verbs. Moreover, the network was also 

sensitive to a range of semantic distinctions: not only were the internal states induced 

by nouns split into animate and inanimate, but the pattern for ‘woman’ was most 

similar to ‘girl’, and that for ‘man’ was most similar to ‘boy’. The network had learnt 

to structure its internal representations according to a mix of syntactic and semantic 

information because these information states were the best way to predict how 

sentences would unfold. Elman concluded that the representations induced by 

connectionist networks need not be flat but could include hierarchical encodings of 

category structure. 

Based on his finding, Elman also argued that the SRN was able to induce 

representations of entities that varied according to their context of use. This contrasts 
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with classical symbolic representations that retain their identity irrespective of the 

combinations into which they are put, a property called ‘compositionality’. This claim 

is perhaps better illustrated by a second paper Elman published two years later called 

‘The importance of starting small’ (1993). In this later paper, Elman explored whether 

rule-based mechanisms are required to explain certain aspects of language 

performance, such as syntax. He focused on ‘long-range dependencies’, which are 

links between words that depend only on their syntactic relationship in the sentence 

and, importantly, not on their separation in a sequence of words. For example, in 

English, the subject and main verb of a sentence must agree in number. If the noun is 

singular, so must be the verb; if the noun is plural, so must be the verb. Thus, in the 

sentence ‘The boy chases the cat’, boy and chases must both be singular. But this is 

also true in the sentence ‘The boy whom the boys chase chases the cat’. In the second 

sentence, the subject and verb are further apart in the sequence of words but their 

relationship is the same; moreover, the words are now separated by plural tokens of 

the same lexical items. Rule-based representations of syntax were thought to be 

necessary to encode these long-distance relationships because, through the recursive 

nature of syntax, the words that have to agree in a sentence can be arbitrarily far apart. 

Using an SRN trained on the same prediction task as that outlined above but 

now with more complex sentences, Elman (1993) demonstrated that the network was 

able to learn these long-range dependencies even across the separation of multiple 

phrases. If boy was the subject of the sentence, when the network came to predict the 

main verb chase as the next word, it predicted that it should be in the singular. The 

method by which the network achieved this ability is of particular interest. Once 

more, Elman explored the similarity structure in the hidden unit representations, using 

principal component analyses to identify the salient dimensions of similarity across 
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which activation states were varying. This enabled him to reduce the high 

dimensionality of the internal states (150 hidden units were used) to a manageable 

number in order to visualize processing. Elman was then able to plot the trajectories 

of activation as the network altered its internal state in response to each subsequent 

input. Figure 5 depicts these trajectories as the network processes different multi-

phrase sentences, plotted with reference to particular dimensions of principal 

component space. This figure demonstrates that the network adopted similar states in 

response to particular lexical items (e.g., tokens of boy, who, chases), but that it 

modified the pattern slightly according to the grammatical status of the word. In 

Figure 5(a), the second principal component appears to encode singularity/plurality. 

Figure 5(b) traces the network’s state as it processes two embedded relative clauses 

containing iterations of the same words. Each clause exhibits a related but slightly 

shifted triangular trajectory to encode its role in the syntactic structure. 

The importance of this model is that it prompts a different way to understand 

the processing of sentences. Previously one would view symbols as possessing fixed 

identities and as being bound into particular grammatical roles via a syntactic 

construction. In the connectionist system, sentences are represented by trajectories 

through activation space in which the activation pattern for each word is subtly shifted 

according to the context of its usage. The implication is that the property of 

compositionality at the heart of the classical symbolic computational approach may 

not be necessary to process language. 
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Figure 5. Trajectory of internal activation states as the SRN processes sentences 

(Elman, 1993). The data show positions according to the dimensions of a principal 

components analysis (PCA) carried out on hidden unit activations for the whole 

training set. Words are indexed by their position in the sequence but represent 

activation of the same input unit for each word. (a) PCA values for the 2nd principal 

component as the SRN processes two sentences, ‘Boy who boys chase chases boy’ or 

‘Boys who boys chase chase boy’; (b) PCA values for the 1st and 11th principal 

components as the SRN processes ‘Boy chases boy who chases boy who chases boy’. 

 

(a)             (b) 

 

 

 

 

 

 

 

 

 

Elman (1993) also used this model to investigate a possible advantage to 

learning that could be gained by initially restricting the complexity of the training set. 

At the start of training, the network had its memory reset (its context layer wiped) 

after every third or fourth word. This window was then increased in stages up to 6-7 

words across training. The manipulation was intended to capture maturational 

changes in working memory in children. Elman (1993) reported that starting small 
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enhanced learning by allowing the network to build simpler internal representations 

that were later useful for unpacking the structure of more complex sentences (see 

Rohde & Plaut, 1999, for discussion and further simulations). This idea resonated 

with developmental psychologists in its demonstration of the way in which learning 

and maturation might interact in constructing cognition. It is an idea that could turn 

out to be a key principle in the organization of cognitive development (Elman et al., 

1996). 

 

What happened next? 

Elman’s simulations with the SRN and the prediction task produced striking results. 

The ability of the network to induce structured representations containing 

grammatical and semantic information from word sequences prompted the view that 

associative statistical learning mechanisms might play a much more central role in 

language acquisition. This innovation was especially welcome given that symbolic 

theories of sentence processing do not offer a ready account of language development. 

Indeed, they are largely identified with the nativist view that little in syntax develops. 

However, one limitation of the above simulations is that the prediction task does not 

learn any categorizations over the input set. While the simulations demonstrate that 

information important for language comprehension and production can be induced 

from word sequences, neither task is performed. The learned distinction between 

nouns and verbs apparent in the hidden unit representations is tied up with carrying 

out the prediction task. But to perform comprehension, for example, the SRN would 

need to learn categorizations from the word sequences, such as deciding which noun 

was the agent and which noun was the patient in a sentence, irrespective of whether 

the sentence was presented in the active (‘the dog chases the cat’) or passive voice 
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(‘the cat is chased by the dog’). These types of computations are more complex and 

the network’s solutions typically more impenetrable. While SRNs have borne the 

promise of an inherently developmental connectionist theory of parsing, progress on a 

full model has been slow (see Christiansen & Chater, 2001). Parsing is a complex 

problem – it is not even clear what the output should be for a model of sentence 

comprehension. Should it be some intermediate depiction of agent-patient role 

assignments, some compound representation of roles and semantics, or a constantly 

updating mental model that processes each sentence in the context of the emerging 

discourse? Connectionist models of parsing await greater constraints from 

psycholinguistic evidence. 

Nevertheless, some interesting preliminary findings have emerged. For 

example, some of the grammatical sentences that the SRN finds the hardest to predict 

are also the sentences that humans find the hardest to understand (e.g., center 

embedded structures like ‘the mouse the cat the dog bit chased ate the cheese’) 

(Weckerly & Elman, 1992). These are sequences that place maximal load on encoding 

information in the network’s internal recurrent loop, suggesting that recurrence may 

be a key computational primitive in language processing. Moreover, when the 

prediction task is replaced by a comprehension task (such as predicting the 

agent/patient status of the nouns in the sentence), the results are again suggestive. 

Rather than building a syntactic structure for the whole sentence as a symbolic parser 

might, the network focuses on the predictability of lexical cues for identifying various 

syntactic structures (consistent with Bates and MacWhinney’s Competition model of 

language development; Bates & MacWhinney, 1989). The salience of lexical cues 

that each syntactic structure exploits and the processing load that each structure places 

on the recurrent loop makes them differentially vulnerable under damage. Here, 
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neuropsychological findings from language breakdown and developmental language 

disorders have tended to follow the predictions of the connectionist account in the 

relative impairments that each syntactic construction should show (Dick et al., 2001; 

2004; Thomas & Redington, 2004). 

For more recent work and discussion of the use of SRNs in syntax processing, 

see Mayberry, Crocker, and Knoeferle (2005), Miikkulainen and Mayberry (1999), 

Morris, Cottrell, and Elman (2000), Rohde (2002), and Sharkey, Sharkey, and 

Jackson (2000). Lastly, the impact of SRNs has not been restricted to language. These 

models have been usefully applied to other areas of cognition where sequential 

information is important. For example, Botvinick and Plaut (2004) have shown how 

this architecture can capture the control of routine sequences of actions without the 

need for schema hierarchies. 

In sum, then, Elman’s work demonstrates how simple connectionist 

architectures can learn statistical regularities over temporal sequences. These systems 

may indeed be sufficient to produce many of the behaviors that linguists have 

described with grammatical rules. However, in the connectionist system, the 

underlying primitives are context-sensitive representations of words and trajectories 

of activation through recurrent circuits. 
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4. Related models 

Before considering the wider impact of connectionism on theories of cognition, we 

should note a number of other related approaches. 

 

4.1 Cascade-correlation and incremental neural network algorithms 

Backpropagation networks specify input and output representations, while in self-

organizing networks only the inputs are specified. These networks therefore include 

some number of internal processing units whose activation states are determined by 

the learning algorithm. The number of internal units and their organization (e.g., into 

layers) plays an important role in determining the complexity of the problems or 

categories that the network can learn. In pattern associator networks, too few units 

and the network will fail to learn; in self-organizing networks, too few output units 

and the network will fail to provide good discrimination between the categories in the 

training set. How does the modeler select in advance the appropriate number of 

internal units? Indeed, for a cognitive model, should this be a decision that the 

modeler gets to make? 

For pattern associator networks, the cascade correlation algorithm (Fahlman & 

Lebiere, 1990) addresses this problem by starting with a network that has no hidden 

units and then adding in these resources during learning as it becomes necessary in 

order to carry on improving on the task. New hidden units are added with weights 

from the input layer tailored so that the unit’s activation correlates with network error 

– i.e., the new unit responds to parts of the problem on which the network is currently 

doing poorly. New hidden units can also take input from existing hidden units, 

thereby creating detectors for higher order features in the problem space. 
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The cascade correlation algorithm has been widely used for studying cognitive 

development (Mareschal & Shultz, 1996; Shultz, 2003; Westermann, 1998), for 

example in simulating children’s performance in Piagetian reasoning tasks (see 

Section 5.2). The algorithm makes links with the constructivist approach to 

development (Quartz, 1993; Quartz & Sejnowski, 1997), which argues that increases 

in the complexity of children’s cognitive abilities are best explained by the 

recruitment of additional neurocomputational resources with age and experience. 

Related models that also use this ‘incremental’ approach to building network 

architectures can be found in the work of Carpenter and Grossberg (Adaptive 

Resonance Theory; e.g., Carpenter & Grossberg, 1987a,b) and in the work of Love 

and colleagues (e.g., Love, Medin, & Gureckis, 2004). 

 

4.2 Mixture of experts models 

The preceding sections assume that only a single architecture is available to learn 

each problem. However, it may be that multiple architectures are available to learn a 

given problem, each with different computational properties. Which architecture will 

end up learning the problem? Moreover, what if a cognitive domain can be broken 

down into different parts, for example in the way that the English past tense problem 

comprises regular and irregular verbs – could different computational components end 

up learning the different parts of the problem? The mixture-of-experts approach 

considers ways in which learning could take place in just such a system with multiple 

components available (Jacobs, Jordan, Nowlan, & Hinton, 1991). In these models, 

functionally specialized structures can emerge as a result of learning, in the 

circumstance where the computational properties of the different components happen 
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to line up with the demands presented by different parts of the problem domain (so 

called structure-function correspondences).  

During learning, mixture-of-experts algorithms typically permit the multiple 

components to compete with each other to deliver the correct output for each input 

pattern. The best performer is then assigned the pattern and allowed to learn it. The 

involvement of each component during functioning is controlled by a gating 

mechanism. Mixture-of-experts models are one of several approaches that seek to 

explain the origin of functionally specialized processing components in the cognitive 

system (see Elman et al., 1996; Jacobs, 1999; Thomas & Richardson, 2006, for 

discussion). An example of the application of mixture of experts can be found in a 

developmental model of face and object recognition, where different ‘expert’ 

mechanisms come to specialize in processing visual inputs that correspond to faces 

and those that correspond to objects (Dailey & Cottrell, 1999). The emergence of this 

functional specialization can be demonstrated by damaging each expert in turn and 

showing a double dissociation between face and object recognition in the two 

components of the model (see Section 5.3). Similarly, Thomas and Karmiloff-Smith 

(2002) showed how a mixture-of-experts model of English past tense could produce 

emergent specialization of separate mechanisms to regular and irregular verbs, 

respectively (see also Westermann, 1998, for related work with a constructivist 

network). 

 

4.3 Hybrid models 

The success of mixture-of-experts models suggests that when two or more 

components are combined within a model, it can be advantageous for the 

computational properties of the components to differ. Where the properties of the 
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components are radically different, for example involving the combination of 

symbolic (rule-based) and connectionist (associative, similarity-based) architectures, 

the models are sometimes referred to as ‘hybrid’. The use of hybrid models is inspired 

by the observation that some aspects of human cognition seem better described by 

rules (e.g., syntax, reasoning) while some seem better described by similarity (e.g., 

perception, memory). We have previously encountered the debate between symbolic 

and connectionist approaches (see Section 2.3) and the proposal that connectionist 

architectures may serve to implement symbolic processes (e.g., Touretzky & Hinton, 

1988). The hybrid systems approach takes the alternative view that connectionist and 

symbolic processing principles should be combined within the same model, taking 

advantage of the strengths of each computational formalism. A discussion of this 

approach can be found in Sun (2002a, b). Example models include CONSYDERR 

(Sun, 1995) and CLARION (Sun & Peterson, 1998) and ACT-R (Anderson & 

Lebiere, 1998). 

 Models with multiple components may also be hybrid in a weaker sense 

where, although a single computational formalism is used, separate components of the 

system employ different representational formats with respect to the same problem 

domain. For example, in a purely connectionist system, one component might employ 

distributed representations that permit different degrees of similarity between 

activation patterns, while a second component employs localist representations in 

which there is no similarity between different representations. Behavior is then driven 

by the interplay between two associative components that employ different similarity 

structures. The cognitive domain of number may be viewed as hybrid in this way, 

combining the similarity-based representations of quantity and the localist 

representations of number facts (such as the order of number labels in counting) and 
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object individuation (see Carey & Sarnecka, 2006). This avenue of theory points 

towards the development of hybrid connectionist models of human concept 

acquisition. In the case of the developmental evidence reviewed by Carey and 

Sarnecka (2006), the hybrid system would acquire the concept of positive integers, a 

concept that (the authors claim) could not be acquired by any single component of the 

system on its own. 

 

4.4 Bayesian Graphical Models 

The use of Bayesian methods of inference in graphical models, including causal 

graphical models, has recently been embraced by a number of cognitive scientists 

(Chater, Tenenbaum & Yuille, 2006; Gopnik et al, 2004). This approach stresses how 

it may be possible to combine prior knowledge in the form of a set of explicit 

alternative graph structures and constraints on the complexity of such structures with 

Bayesian methods of inference to select the best type of representation of a particular 

data set (e.g., lists of facts about many different animals); and within that, to select the 

best specific instantiation of a representation of that type (Tenenbaum, Griffiths, & 

Kemp, 2006). These models are useful contributions to our understanding, 

particularly because they allow explicit exploration of the role of prior knowledge in 

the selection of a representation of the structure present in each data set. It should be 

recognized, however, that such models are offered as characterizations of learning at 

Marr’s “Computational Level” and as such they do not specify the representations and 

processes that are actually employed when people learn. These models do raise 

questions for connectionist research that does address such questions, however.  

Specifically, the work provides a benchmark against which connectionist approaches 

might be tested for their success in learning to represent the structure from a data set, 
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and in using such a structure to make inferences consistent with optimal performance 

according to a Bayesian approach within a graphical model framework. More 

substantively, the work raises questions about whether or not optimization depends on 

the explicit representation of alternative structured representations, or whether an 

approximation to such structured representations can arise without their pre-

specification. For an initial examination of these issues as they arise in the context of 

causal inference, see McClelland and Thompson (2007). 
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5. Connectionist influences on cognitive theory 

Connectionism offers an explanation of human cognition because instances of 

behavior in particular cognitive domains can be explained with respect to set of 

general principles (parallel distributed processing) and the conditions of the specific 

domains. However, from the accumulation of successful models, it is also possible to 

discern a wider influence of connectionism on the nature of theorizing about 

cognition, and this is perhaps a truer reflection of its impact. How has connectionism 

made us think differently about cognition? 

 

5.1 Knowledge versus processing 

One area where connectionism has changed the basic nature of theorizing is memory. 

According to the old model of memory based on the classical computational 

metaphor, the information in long-term memory (e.g., on the hard disk) has to be 

moved into working memory (the CPU) for it to be operated on, and the long-term 

memories are laid down via a domain-general buffer of short-term memory (RAM). 

In this type of system, it is relatively easy to shift informational content between 

different systems, back and forth between central processing and short and long-term 

stores. Computation is predicated on variables: the same binary string can readily be 

instantiated in different memory registers or encoded onto a permanent medium. 

 By contrast, knowledge is hard to move about in connectionist networks 

because it is encoded in the weights. For example, in the past tense model, knowledge 

of the past tense rule ‘add –ed’ is distributed across the weight matrix of the 

connections between input and output layers. The difficulty in portability of 

knowledge is inherent in the principles of connectionism – Hebbian learning alters 

connection strengths to reinforce desirable activation states in connected units, tying 
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knowledge to structure. If we start from the premise that knowledge will be very 

difficult to move about in our information processing system, what kind of cognitive 

architecture do we end up with? There are four main themes. 

 First, we need to distinguish between two different ways in which knowledge 

can be encoded: active and latent representations (Munakata & McClelland, 2003). 

Latent knowledge corresponds to the information stored in the connection weights 

from accumulated experience. By contrast, active knowledge is information contained 

in the current activation states of the system. Clearly the two are related, since the 

activation states are constrained by the connection weights. But, particularly in 

recurrent networks, there can be subtle differences. Active states contain a trace of 

recent events (how things are at the moment) while latent knowledge represents a 

history of experience (how things tend to be). Differences in the ability to maintain 

the active states (e.g., in the strength of recurrent circuits) can produce errors in 

behavior where the system lapses into more typical ways of behaving (Munakata, 

1998; Morton & Munakata, 2002). 

 Second, if information does need to be moved around the system, for example 

from a more instance-based (episodic) system to a more general (semantic) system, 

this will require special structures and special (potentially time consuming) processes. 

Thus McClelland, McNaughton, and O’Reilly (1995) proposed a dialogue between 

separate stores in hippocampus and neocortex to gradually transfer knowledge from 

episodic to semantic memory. French, Ans and Rousset (2001) proposed a special 

method to transfer knowledge between two memory systems: internally generated 

noise produces ‘pseudopatterns’ from one system that contain the central tendencies 

of its knowledge; the second memory system is then trained with this extracted 

knowledge to effect the transfer. 
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Third, information will be processed in the same substrate where it is stored. 

Therefore, long-term memories will be active structures and will perform 

computations on content. An external strategic control system plays the role of 

differentially activating the knowledge in this long-term system that is relevant to the 

current context. In anatomical terms, this distinction broadly corresponds to 

frontal/anterior (strategic control) and posterior (long-term) cortex. The design means, 

somewhat counter-intuitively, that the control system has no content. Rather, the 

control system contains placeholders that serve to activate different regions of the 

long-term system. The control system may contain plans (sequences of placeholders) 

and it may be involved in learning abstract concepts (using a placeholder to 

temporarily co-activate previously unrelated portions of long-term knowledge while 

Hebbian learning builds an association between them) but it does not contain content 

in the sense of a domain-general working memory. The study of frontal systems then 

becomes an exploration of the activation dynamics of these placeholders and their 

involvement in learning (see, e.g., work by Davelaar & Usher, 2002; Haarmann & 

Usher, 2001; O’Reilly, Braver, & Cohen, 1999; Usher & McClelland, 2001). 

Similarly, connectionist research has explored how activity in the control 

system can be used to modulate the efficiency of processing elsewhere in the system, 

for instance to implemented selective attention. For example, Cohen, Dunbar, and 

McClelland (1990) demonstrated how task units could be used to differentially 

modulate word naming and color naming processing channels in a model of the color-

word Stroop task. In this model, latent knowledge interacted with the operation of 

task control, so that it was harder to selectively attend to color-naming and ignore 

information from the more practiced word-naming channel than vice versa. This work 

was later extended to demonstrate how deficits in the strategic control system (pre-
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frontal cortex) could lead to problems in selective attention in disorders like 

schizophrenia (Cohen & Servan-Schreiber, 1992).  

Lastly, the connectionist perspective on memory alters how we conceive of 

domain generality in processing systems. It is unlikely that there are any domain-

general processing systems that serve as a ‘Jack of all trades’, i.e., that can move 

between representing the content of multiple domains. However, there may be 

domain-general systems that are involved in modulating many disparate processes 

without taking on the content of those systems, what we might call a system with ‘a 

finger in every pie’. Meanwhile, short-term or working memory (as exemplified by 

the active representations contained in the recurrent loop of a network) is likely to 

exist as a devolved panoply of discrete systems, each with its own content-specific 

loop. For example, research in the neuropsychology of language now tends to support 

the existence of separate working memories for phonological, semantic, and syntactic 

information (see MacDonald & Christiansen, 2002, for discussion of these 

arguments). 

 

5.2 Cognitive development 

A key feature of PDP models is the use of a learning algorithm for modifying the 

patterns of connectivity as a function of experience. Compared to symbolic, rule-

based computational models, this has made them a more sympathetic formalism for 

studying cognitive development (Elman et al., 1996). The combination of domain-

general processing principles, domain-specific architectural constraints, and 

structured training environments has enabled connectionist models to give accounts of 

a range of developmental phenomena. These include infant category development, 
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language acquisition and reasoning in children (see Mareschal & Thomas, 2007, for a 

recent review). 

Connectionism has become aligned with a resurgence of interest in statistical 

learning, and a more careful consideration of the information available in the child’s 

environment that may feed their cognitive development. One central debates revolves 

around how children can become ‘cleverer’ as they get older, appearing to progress 

through qualitatively different stages of reasoning. Connectionist modeling of the 

development of children’s reasoning was able to demonstrate that continuous 

incremental changes in the weight matrix driven by algorithms such as 

backpropagation can result in non-linear changes in surface behavior, suggesting that 

the stages apparent in behavior may not necessarily be reflected in changes in the 

underlying mechanism (e.g., McClelland, 1989). Other connectionists have argued 

that algorithms able to supplement the computational resources of the network as part 

of learning may also provide an explanation for the emergence of more complex 

forms of behavior with age (e.g., cascade correlation; see Shultz, 2003). 

 The key contribution of connectionist models in the area of developmental 

psychology has been to specify detailed, implemented models of transition 

mechanisms that demonstrate how the child can move between producing different 

patterns of behavior. This was a crucial addition to a field that has accumulated vast 

amounts of empirical data cataloguing what children are able to do at different ages. 

The specification of mechanism is also important to counter some strongly empiricist 

views that simply identifying statistical information in the environment suffices as an 

explanation of development; instead, it is necessary to show how a mechanism could 

use this statistical information to acquire some cognitive capacity. Moreover, when 

connectionist models are applied to development, it often becomes apparent that 
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passive statistical structure is not the key factor; rather, the relevant statistics are in 

the transformation of the statistical structure of the environment to the output or the 

behavior that is relevant to the child, thereby appealing to notions like the regularity, 

consistency, and frequency of input-output mappings. 

 Recent connectionist approaches to development have begun to explore how 

the computational formalisms may change our understanding of the nature of the 

knowledge that children acquire. For example, Mareschal et al. (2007) argue that 

many mental representations of knowledge are partial (i.e., capture only some task 

relevant dimensions); the existence of explicit language may blind us to the fact that 

there could be a limited role for truly abstract knowledge in the normal operation of 

the cognitive system (see Westermann et al., 2007). Current work also explores the 

computational basis of critical or sensitive periods in development, uncovering the 

mechanisms by which the ability to learn appears to reduce with age (e.g., McClelland 

et al., 1999; Thomas & Johnson, 2006). 

 

5.3 The study of acquired disorders in cognitive neuropsychology 

Traditional cognitive neuropsychology of the 1980s was predicated on the assumption 

of underlying modular structure, i.e., that the cognitive system comprises a set of 

independently functioning components. Patterns of selective cognitive impairment 

after acquired brain damage could then be used to construct models of normal 

cognitive function. The traditional models comprised box-and-arrow diagrams that 

sketched out rough versions of cognitive architecture, informed both by the patterns 

of possible selective deficit (which bits can fail independently) and by a task analysis 

of what the cognitive system probably has to do. 
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In the initial formulation of cognitive neuropsychology, caution was advised 

in attempting to infer cognitive architecture from behavioral deficits, since a given 

pattern of deficits might be consistent with a number of underlying architectures 

(Shallice, 1988). It is in this capacity that connectionist models have been extremely 

useful. They have both forced more detailed specification of proposed cognitive 

models via implementation and also permitted assessment of the range of deficits that 

can be generated by damaging these models in various ways. For example, models of 

reading have demonstrated that the ability to decode written words into spoken words 

and recover their meanings can be learned in a connectionist network; and when this 

network is damaged by, say, lesioning connection weights or removing hidden units, 

various patterns of acquired dyslexia can be simulated (e.g., Plaut et al., 1996; Plaut & 

Shallice, 1994). Connectionist models of acquired deficits have grown to be an 

influential aspect of cognitive neuropsychology and have been applied to domains 

such as language, memory, semantics, and vision (see Cohen, Johnstone & Plunkett, 

2000, for examples). 

 Several ideas have gained their first or clearest grounding via connectionist 

modeling. One of these ideas is that patterns of breakdown can arise from the 

statistics of the problem space (i.e., the mapping between input and output) rather than 

from structural distinctions in the processing system. In particular, connectionist 

models have shed light on a principal inferential tool of cognitive neuropsychology, 

the double dissociation. The line of reasoning argues that if in one patient, ability A 

can be lost while ability B is intact, and in a second patient, ability B can be lost while 

ability A is intact, then the two abilities may be generated by independent underlying 

mechanisms. In a connectionist model of category-specific impairments of semantic 

memory, Devlin et al. (1997) demonstrated that a single undifferentiated network 
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trained to produce two behaviors could show a double dissociation between them 

simply as a consequence of different levels of damage. This can arise because the 

mappings associated with the two behaviors lead them to have different sensitivity to 

damage. For a small level of damage, performance on A may fall off quickly while 

performance on B declines more slowly; for a high level of damage, A may be more 

robust than B. The reverse pattern of relative deficits implies nothing about structure. 

 Connectionist researchers have often set out to demonstrate that, more 

generally, double dissociation methodology is a flawed form of inference, on the 

grounds that such dissociations arise relatively easily from parallel distributed 

architectures where function is spread across the whole mechanism (e.g., Plunkett & 

Bandelow, 2006; Plunkett & Juola, 1998). However, on the whole, when 

connectionist models show robust double dissociations between two behaviors (for 

equivalent levels of damage applied to various parts of the network and over many 

replications), it does tend to be because different internal processing structures (units 

or layers or weights) or different parts of the input layer or different parts of the 

output layer are differentially important for driving the two behaviors – that is, there 

is specialization of function. Connectionism models of breakdown have, therefore, 

tended to support the traditional inferences. Crucially, however, connectionist models 

have greatly improved our understanding of what modularity might look like in a 

neurocomputational system: a partial rather than an absolute property; a property that 

is the consequence of a developmental process where emergent specialization is 

driven by structure-function correspondences (the ability of certain parts of a 

computational structure to learn certain kinds of computation better than other kinds; 

see Section 4.2); and a property that must now be complemented by concepts such as 
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division of labor, degeneracy, interactivity, and redundancy (see Thomas & 

Karmiloff-Smith, 2002a; Thomas et al., 2006, for discussion). 

 

5.4 The origins of individual variability and developmental disorders 

In addition to their role in studying acquired disorders, the fact that many 

connectionist models learn their cognitive abilities makes them an ideal framework 

within which to study developmental disorders, such as autism, dyslexia, and specific 

language impairment (Mareschal et al., 2007; Joanisse & Seidenberg, 2003; Thomas 

& Karmiloff-Smith, 2002b, 2003a, 2005). Where models of normal cognitive 

development seek to study the ‘average’ child, models of atypical development 

explore how developmental profiles may be disrupted. Connectionist models contain 

a number of constraints (architecture, activation dynamics, input and output 

representations, learning algorithm, training regime) that determine the efficiency and 

outcome of learning. Manipulations to these constraints produce candidate 

explanations for impairments found in developmental disorders or to the impairments 

caused by exposure to atypical environments such as in cases of deprivation. 

 In the 1980s and 1990s, many theories of developmental deficits employed the 

same explanatory framework as adult cognitive neuropsychology. There was search 

for specific developmental deficits or dissociations, which were then explained in 

terms of the failure of individual modules to development. However, as Karmiloff-

Smith (1998) and Bishop (1997) pointed out, most of the developmental deficits were 

actually being explained with reference to non-developmental, static, and sometimes 

adult models of normal cognitive structure. Karmiloff-Smith (1998) argued that the 

causes of developmental deficits of a genetic origin are likely to lie in changes to low-

level neurocomputational properties that only exert their influence on cognition via an 
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extended atypical developmental process (see also Elman et al., 1996). Connectionist 

models provide the ideal forum to explore the thesis that an understanding of the 

constraints on the developmental process is essential for generating accounts of 

developmental deficits. 

 The study of atypical variability also prompts a consideration of what causes 

variability within the normal range, otherwise known as individual differences or 

intelligence. Are differences in intelligence caused by variation in the same 

computational parameters that can cause disorders? Are some developmental 

disorders just the extreme lower end of the normal distribution or are they 

qualitatively different conditions? What computational parameter settings are able to 

produce above average performance? Connectionism has begun to take advantage of 

the accumulated body of models of normal development to consider the wider 

question of cognitive variation in parameterized computational models (Thomas & 

Karmiloff-Smith, 2003b). 

 

5.5 Future directions 

The preceding sections indicate the range and depth of influence of connectionism on 

contemporary theories of cognition. Where will connectionism go next? Necessarily, 

connectionism began with simple models of individual cognitive processes, focusing 

on those domains of particular theoretical interest. This piecemeal approach generated 

explanations of individual cognitive abilities using bespoke networks, each containing 

its own pre-determined representations and architecture. In the future, one avenue to 

pursue is how these models fit together in the larger cognitive system – for example, 

to explain how the past tense network described in Section 3.2 might link up with the 

sentence processing model described in Section 3.3 to process past tenses as they arise 
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in sentences. A further issue is to address the developmental origin of the 

architectures that are postulated. What processes specify the parts of the cognitive 

system to perform the various functions and how do these sub-systems talk to each 

other, both across development and in the adult state? Improvements in computational 

power will aid more complex modeling endeavors. Nevertheless, it is worth bearing in 

mind that increasing complexity creates a tension with the primary goals of modeling 

– simplification and understanding. It is essential that we understand why more 

complicated models function as they do or they will merely become interesting 

artifacts (see Elman, 2005; Thomas, 2004, for further discussion). 

 In terms of its relation with other disciplines, a number of future influences on 

connectionism are discernible. Connectionism will be affected by the increasing 

appeal to Bayesian probability theory in human reasoning. In Bayesian theory, new 

data are used to update existing estimates of the most likely model of the world. Work 

has already begun to relate connectionist and Bayesian accounts, for example in the 

domain of causal reasoning in children (McClelland & Thompson, 2007). In some 

cases, connectionism may offer alternative explanations of the same behavior, in 

others it may be viewed as an implementation of a Bayesian account (see Section 3.1). 

Connectionism will continue to have a close relation to neuroscience, perhaps seeking 

to build more neural constraints into its computational assumptions (O’Reilly & 

Munakata, 2000). Many of the new findings in cognitive neuroscience are influenced 

by functional brain imaging techniques. It will be important, therefore, for 

connectionism to make contact with these data, either via systems-level modeling of 

the interaction between sub-networks in task performance, or in exploring the 

implications of the subtraction methodology as a tool for assessing the behavior of 

distributed interactive systems. The increasing influence of brain imaging foregrounds 
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the relation of cognition to the neural substrate; it depends on how seriously one takes 

the neural plausibility of connectionist models as to whether an increased focus on the 

substrate will have particular implications for connectionism over and above any 

other theory of cognition.  

Connectionist approaches to individual differences and developmental 

disorders suggest that this modeling approach has more to offer in considering the 

computational causes of variability. Research in behavioral genetics argues that a 

significant proportion of behavioral variability is genetic in origin (Bishop, 2006; 

Plomin, Owen & McGuffin, 1994). However, the neurodevelopmental mechanisms 

by which genes produce such variation are largely unknown. While connectionist 

cognitive models are not neural, the fact that they incorporate neurally inspired 

properties may allow them to build links between behavior (where variability is 

measured) and the substrate on which genetic effects act. In the future, connectionism 

may therefore help to rectify a major shortcoming in our attempts to understand the 

relation of the human genome to the human mind – the omission of the cognitive 

level. 
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6 Conclusions 

In this chapter, we have considered the contribution of connectionist modeling to our 

understanding of cognition. Connectionism was placed in the historical context of 19th 

century associative theories of mental processes and 20th century attempts to 

understand the computations carried out by networks of neurons. The key properties 

of connectionist networks were then reviewed and particular emphasis placed on the 

use of learning to build the microstructure of these models. The core connectionist 

themes include the following: (1) that processing is simultaneously influenced by 

multiple sources of information at different levels of abstraction, operating via soft 

constraint satisfaction; (2) that representations are spread across multiple simple 

processing units operating in parallel; (3) that representations are graded, context-

sensitive, and the emergent product of adaptive processes; (4) that computation is 

similarity-based and driven by the statistical structure of problem domains, but it can 

nevertheless produce rule-following behavior. We illustrated the connectionist 

approach via three landmarks models, the Interactive Activation model of letter 

recognition (McClelland & Rumelhart, 1981), the past tense model (Rumelhart & 

McClelland, 1986), and simple recurrent networks for finding structure in time 

(Elman, 1990). Apart from its body of successful individual models, connectionist 

theory has had a widespread influence on cognitive theorizing, and this influence was 

illustrated by considering connectionist contributions to our understanding of 

memory, cognitive development, acquired cognitive impairments, and developmental 

deficits. Finally, we peeked into the future of connectionism, arguing that its 

relationships with other fields in the cognitive sciences are likely to guide its future 

contribution to understanding the mechanistic basis of thought. 
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