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INTRODUCTION

In the continuing debate on sensitive periods, Tyler (this

issue) argues for a mechanistic explanation of sensitive

periods in development, rather than simply deriving a

relationship between plasticity and age. Armstrong et al.

(2005) endorse convergent approaches to assess types of

plasticity, including the use of behavioral evidence,

neurophysiological evidence, functional magnetic reso-

nance imaging, event related potentials, and an appeal to

evolutionary perspectives. In this contribution, we

propose that a computational level of analysis is a key

component in understanding the mechanisms through

which functional plasticity alters in the cognitive system.

To support our case, we discuss three examples of specific

computational models that exhibit reductions in plasticity,

and show how these models relate to Johnson (2005) three

proposals for how sensitive periods might end: endogen-

ous, self-terminating, and stabilization. Typically, we will

find that implemented computational models of sensitive

periods demonstrate multiple influences at work when

functional plasticity reduces. Further, we suggest that

computational modeling will allow us to understand how

different factors interact to result in a functional reduction

of plasticity in different cases.

THE IMPORTANCE OF COMPUTATIONAL
IMPLEMENTATION

Implementation serves to evaluate the assumptions con-

tained within theoretical proposal. It may be as straight-

forward as demonstrating that, in a given cognitive domain,

turning down a ‘‘learning rate’’ parameter in a model of

development is sufficient to capture the behavioral data

indicating a sensitive period. Models are a concrete way to

ask, does the theory really work? However, more often

multiple assumptions are contained within any theory, and

models serve as an exploration and explication of how these

factors may interact in driving the functional plasticity of a

system. Further, models may generate novel, testable

predictions for how plasticity can be increased or decreased

in the system. Most importantly, implementation forces the

modeler to make decisions about hidden assumptions

within verbally specified theories.

Three issues are of particular relevance for sensitive

periods in functional brain development: (1) what is the

actual nature of the representations used to encode the

problem domain? It turns out that both overlap between

the representations generated by old and new experiences,

and systematicity within problem domains can both be

influential in determining functional plasticity. (2) What is

the frequency with which the system encounters various

experiences? It turns out that under some conditions,

frequency can overcome changing conditions of internal

plasticity. (3) What level of processing resources is

available to the system? It turns out that under some

conditions, changes in resources can be directly equiva-

lent to changes in plasticity, particularly in parallel pro-

cessing systems, and further that competition for limited

resources can account for many instances of reduced

functional plasticity.

Let us consider the last of these three points. Processing

resources are of particular relevance where recovery from

damage is used as a metric of plasticity. Evidence of

‘‘crowding effects’’ in children who have suffered brain

damage indicates that capacity limitations can influence

cognitive development (Anderson, Northam, Hendy, &

Wrennall, 2001). A crowding effect describes the situation

where after recovery, there is a generalized depression of

neuropsychological functions rather than specific cognitive

deficits, as if the remaining system has the computational
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properties but not the capacity to follow the normal course

of development. It has been argued that children’s ability to

recover from brain damage depends, to some extent, on

their premorbid level of processing resources, termed

cerebral or cognitive ‘‘reserve’’ (Dennis, 2000; Stern,

2002). The greater the premorbid level of resources, the

better the prospect for recovery. A focus on resources

prompts the following conclusion: one cannot interpret a

developmental failure to recover from brain damage as a

lower level of plasticity unless the domain(s) in question

can definitely be acquired with the reduced level of

resources, were this reduced level to be present at the start

of development. Thus, when de Schonen, Mancini, Camps,

Maes, and Laurent (2005) observe in children with pre-,

peri-, or postnatal brain damage a failure to later acquire

face recognition expertise, the authors interpret this in

terms of ‘‘poor postlesional face-processing plasticity’’ (p.

184); yet it may be that the remaining processing resources

available to the child were simply insufficient to acquire the

normal level of expertise whatever the level of plasticity.

Alternative explanations of this nature derive from the

requirement to make decisions about resources when

building a model. Implementation, for example, would

force a modeler to make a decision on what is happening

inside a learning system during a period of sensory

deprivation. However, the fact that models of develop-

ment employ analytically derived learning algorithms

itself leads to new candidate explanations of changes in

functional plasticity. Take the well-known example of

Hebbian learning. Within the brain, Hebbian learning

can be grossly characterized as cells that fire together,

wire together. More specifically, the change in the

connection strength between two neurons is held to be

proportional to the product of their correlated activity.

More formally,

Dwij ¼ eaiaj ð1Þ

where ai is the activation of the sending unit and aj is

the activation of the receiving unit, wij is the connection

strength between them,D is the change in strength, and e is

the ‘‘learning rate parameter’’ (see, e.g., O’Reilly &

Munakata, 2000, equation 4.2). The learning rate para-

meter is employed when multiple associations are to be

learnt in the same network. Its value is typically set at less

than 1 to prevent wild oscillations between different

connection strengths after each training experience and

instead encourage the network to converge on a com-

promise value that will accommodate all associations.

Clearly, the plasticity of a system using this algorithm can

be manipulated just by altering the ‘‘learning rate

parameter.’’ But less obviously, increases in the activation

of either the sending or receiving unit themselves increase

plasticity. That is, under the terms of the Hebbian

algorithm, simply a more activated system will be more

plastic one.1 It is not clear whether this candidate

mechanism for altering plasticity has relevance for brain

development. Event-related potential studies of brain

activity indicate that voltage potentials are of greater

amplitude earlier in development (see, e.g., Nelson &

Monk, 2001, Fig. 9.5), though other factors such as skull

thickness and conductivity may partially explain this.

Brain metabolism measured through PET shows a rising

then falling profile across development, with a peak in

mid-childhood, though synaptic density appears to peak

around 1 year of age (Chugani, Phelps, & Mazziotta,

1987; Huttenlocher, 2002). In fMRI, the BOLD response

in children and adolescents appears to be similar to that

in adults in time course and peak amplitude (Casey,

Davidson, & Rosen, 2002), although on individual tasks,

brain activations in children have been found to be more

widespread than in adults (e.g., Casey et al., 1997). The

extent to which these neurophysiological measurements

relate to the working computational learning algorithm in

the brain, and their changes during development, may be

a promising novel line of enquiry in developmental

cognitive neuroscience.

We now turn to some examples of implemented

models, where the impact of factors such as representa-

tional overlap, frequency, and resource level becomes

apparent. First, let us recap Johnson (2005) three classes

of explanation for the end of sensitive periods. These are

that (a) the termination arises from endogenous factors

controlled by maturation or an external environmental

‘‘trigger,’’ (b) learning is self-terminating, in that the

system drives itself into a representational state where it is

no longer responsive, and (c) underlying plasticity does

not actually reduce but the constraints on plasticity (such

as environmental inputs) become stable. The following

three examples all exhibit sensitive periods that come to

an end, and each appeals to one of the above explanations.

Note that all examples will use algorithms that contain a

‘‘learning rate’’ parameter but in all cases, that parameter

is held constant throughout training.

EXAMPLE 1: CHICK IMPRINTING AND
THE SELF-TERMINATING SENSITIVE PERIOD

O’Reilly and Johnson (1994) constructed a model of filial

imprinting in the chick brain. When chicks are exposed to

visual stimuli early in life, they can develop a strong

preference for a given object. This imprinting can only

be established in a specific period of life, is relatively

unaffected by subsequent exposure to different objects,

and is self-terminating in that the sensitive period is

experience driven rather than based on strict chronologi-

Developmental Psychobiology. DOI 10.1002/dev

1See Mareschal and Bremner (2006) for an application of this idea to
infant behavioral development.
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cal age. O’Reilly and Johnson (1994) neurocomputational

model was based on the known neuroanatomy of the chick

forebrain and contained several features, including the

development of translation invariance for objects pre-

sented on its retina. Here we will just concentrate on how

its representations developed, simplifying the dynamics

of the model somewhat. The model was self-organizing,

in that it developed representations on an output layer

based on exposure to patterns presented on an input layer.

In the simulations capturing the closing of the sensitive

period, the model was trained on Object A for 100

presentations. It was then trained on an entirely dissimilar

Object D. After 150 presentations of D, the network

switched its preference from A to D, where preference was

assessed by the total activation on the output layer

produced by each object. However, if the model was

initially trained for only 25 presentations longer (125

presentations of Object A), its preference did not switch to

D even after 900 presentations of Object D. Experience-

dependent self-organization led to the closing of the

sensitive period at 125 presentations of A. This provides

an example of how self-termination of plasticity might

work.

It is instructive to consider how this process worked in

terms of underlying computations. Increased training on

Object A led to further recruitment of units on the output

layer to represent this input pattern. After 125 presenta-

tions of Object A, the majority of units on this layer were

now representing Object A. Since Object D was dissimilar

to A (their representations were nonoverlapping), it could

only activate and, therefore, attempt to recruit different

output units to those activated by A. That is, it could not

impinge on the units already recruited by A due to the lack

of similarity. As a result, however, much learning took

place on D, there only remained a minority of the output

units that could become selective for this stimulus. Given

that the model’s stimulus preference was driven by total

activation engendered on the output layer, D could never

become the preferred stimulus once A had recruited a

majority of the output units. There were insufficient

resources left to permit this (see O’Reilly & Johnson,

1994, p.374).

Therefore, although this is clearly an instantiation of a

self-terminating sensitive period, it arises due to competi-

tion for limited resources and a lack of representational

overlap between new and old experiences in this

implementation.

EXAMPLE 2: NON-NATIVE PHONEME
DISCRIMINATION AND THE SENSITIVE
PERIOD ENDED BY STABILIZATION

Monolingual Japanese speakers have difficulty discrimi-

nating the English /r/ and /l/ sounds despite repeated

exposure to words containing them, consistent with

reduced functional plasticity for the acquisition of

nonnative phonemic contrasts in second language lear-

ners. However, if exaggerated versions of /r/ and /l/

phonemes are presented to monolingual Japanese speak-

ers, they can learn to distinguish both these phonemes and

subsequently normal exemplars of the /r/ and /l/ phonemes

(McCandliss, Fiez, Protopapas, Conway, & McClelland,

2002). McClelland, Thomas, McCandliss, and Fiez

(1999) constructed a neurocomputational model to ex-

plore how this reduction in plasticity might take place in

monolingual speakers. The model used a self-organizing

architecture, with an input layer on which the phonemes

were presented and an output layer that had to develop the

relevant categories. Two versions of the model were

trained. A ‘‘Japanese’’ model learned a single category of

phonemes in the /l/–/r/ region of input space and learned a

single output category, while an ‘‘English’’ model was

presented with two partially overlapping input categories

standing for tokens of /l/ and /r/ and learned two output

categories. In the transfer condition, ‘‘adult Japanese’’

networks with 300 epochs of training were exposed to the

English-like environment with separate /l/ and /r/ tokens.

None subsequently reorganized their output layer into two

output categories. However, when ‘‘exaggerated’’ tokens

of /l/ and /r/ were used for the two input categories, all

‘‘adult Japanese’’ networks learned to discriminate these

stimuli within only a few epochs of their introduction into

the training set and this discrimination then extended to

the original exemplars.

Again, it is instructive to consider the exact representa-

tions used. Each phoneme was represented by a 3� 3

square on a grid-like input layer. The single ‘‘Japanese’’

/l/–/r/ input was a 3� 3 square in the center of the input

layer. After training, a single output category came to

represent this input pattern. The ‘‘English’’ /l/ and /r/

categories were represented by two 3� 3 squares on the

input layer that overlapped by one row. Their representa-

tions had three squares in common and six squares

separate. In the ‘‘English’’ condition, the six nonoverlap-

ping squares were sufficient to drive the development of

two separate output categories. When the ‘‘Japanese’’ net

was exposed to ‘‘English’’ input, the two ‘‘English’’

phoneme categories overlapped the single ‘‘Japanese’’

category by two rows each, that is, each shared six squares

with the single ‘‘Japanese’’ category and differed by only

three.

Consider a trained ‘‘Japanese’’ network with its one

output category. It is now presented with the two novel

‘‘English’’ input categories. When either novel input is

presented, the network receives activation from six

squares that fall within its original input category and

only three that fall outside. The final output state is the

result of a competition, in which the six old inputs defeat

Developmental Psychobiology. DOI 10.1002/dev Modeling of Sensitive Periods 3
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the three new: the novel input is assimilated to the original

single category, and the network does not register that it

has seen something new. In order for plastic change to

occur, new units must win the competition on the output

layer. The exaggerated tokens of the ‘‘English’’ /l/ and /r/

categories are created so that they only overlap with the

single ‘‘Japanese’’ phoneme by three squares; six squares

fall outside the old category. Now the network receives

signals from six squares that the input is something new

and only three that it is old. Different units win the

competition to become activate on the output layer, and

this causes reorganization into two output categories.

These categories can then also be activated by the original

/l/ and /r/ tokens, since these overlap their exaggerated

versions by six squares.

In this model, then, the sensitive period of the self-

organization ended because its input had stabilized.

Although different tokens appeared in its environment

corresponding to the shift to ‘‘English’’ input, the

representational overlap between old and new experiences

was so great that the learning system was essentially

‘‘blind’’ to the change. Only when the difference between

exemplars was artificially increased was the latent

plasticity of the system revealed and reorganization

triggered. Here is an example of Johnson’s stabilization

class of termination, but one that crucially depends on

representational overlap for its implementation.

EXAMPLE 3: THE EMERGENCE OF
SPECIALIZED FUNCTIONAL STRUCTURE
AND THE SENSITIVE PERIOD ENDED
BY ENDOGENOUS FACTORS

The preceding examples have focused on sensitive period

effects in self-organizing systems. Research has also

explored sensitive periods in associative systems that are

required to learn input–output mappings. These have

included research on sensitive periods for recovery from

damage (Marchman, 1997) and age-of-acquisition effects

(Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan,

in pressQ2), both in the domain of language acquisition. In

this section, we briefly discuss some results from our own

simulation work extending the findings of Marchman

(1997).

Marchman (1997) employed the English past tense as a

test domain to study acquisition, loss, and recovery in

associative networks. The English past tense is of note

because it is characterized by a predominant rule (e.g.,

talk-talked, drop-dropped, etc.) that extends to novel

stems (e.g., wug-wugged), but also contains exception

verbs (go-went, hit-hit, sing-sang). This aspect of

grammar has been much studied because of the problems

its dual regular/irregular structure presents for children

during language acquisition. It has even been proposed

that different brain areas become specialized for the

processing of regular and irregular verbs (see, e.g., Tyler,

Marslen-Wilson, & Stamatakis, 2005). The English past

tense is of interest here because it is possible to simulate

the emergent specialization of regular and irregular verbs

to different pathways in an associative network (Thomas

& Karmiloff-Smith, 2002; Thomas & Richardson, 2006).

The problem can, therefore, additionally serve as a test

domain with which to explore sensitive periods in the

emergence of specialized functional structure. This issue

is important because plenty of evidence suggests that

children suffering unilateral brain damage can reorganize

their systems to achieve a functional structure sufficient to

generate behavior in the normal range, while adults who

suffer similar damage exhibit persisting deficits. Aphasia

after left hemisphere damage is one example (see Bates &

Roe, 2001). Such evidence implies a sensitive period for

when functional structures can be reorganized after

damage.

Our simulations used an associative network with two

pathways, trained using the backpropagation algorithm.

The architecture is shown in Figure 1. The input layer is

connected to output layer either directly or via a layer of

intermediate processing units. During training, the direct

route is more suited to learning regular past tenses and the

general rule, while the indirect route comes to specialize

in exception mappings that require its additional compu-

tational power (see Thomas & Karmiloff-Smith, 2002, for

details of this model). We assessed the functional

plasticity of this system by measuring its recovery from

damage at different points in training. In the normal

condition, a network is trained for 500 epochs. A lesion

occurring at 490 epochs would only, therefore, give the

Developmental Psychobiology. DOI 10.1002/dev

FIGURE 1 Architecture of the associative network trained on

the English past tense problem. Rectangles represent layers of

simple neuron-like processing units, and black arrows represent

matrices of connections between layers. Verbs stems were coded

on the input layer and past tenses on the output layer using

phonological features.
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network 10 epochs to recover. The confound of lesion age

and recovery time can of course suggest poorer plasticity

later in training. However, we can control for this artifact

by extending training beyond the normal period, so that

each network has 500 epochs to recover from damage

irrespective of when the damage occurred. The network

was damaged either prior to training, or after 10, 50, 100,

250, 400, 450, or 490 epochs of training by lesioning 75%

of the connections in both pathways. Its ability to recover

was then assessed.

Crucially, the network was also given an endogenous

reduction in its plasticity. From 100 epochs onwards, any

network connection below a given threshold had a small

probability of being pruned away (i.e., set to zero for the

remainder of training), implementing the idea that the

network is initially over-resourced but then prunes

away unnecessary connections (Huttenlocher, 2002).

With fewer connections, the network’s ability to learn is

reduced. The 100-epoch onset presumed an endogenous

trigger for pruning in the model.

Figure 2 shows the normal endstate performance (gray

bars) for the regulars, rule generalization, and three types

of exception verb (labeled EP1, EP2, EP3f). It also

demonstrates the level of endstate recovery achieved

following damage at different points during training.

Performance levels are shown both for recovery at the

completion of 500 epochs, where later lesions will have

had shorter recovery times (white bars), and following a

fixed recovery period of 500 epochs post lesion (black

bars). Regulars and rules indicated little evidence of

sensitive periods in this associative system, with similar

levels of recovery whenever the damage occurred.

Regular patterns and rule generalization retained their

functional plasticity because of the high type frequency

and systematicity amongst regular past tenses in the

training set (see Lambon Ralph & Ehsan, in pressQ3, and

Seidenberg & Zevin, 2006, for discussions of the

influence of systematicity and frequency on age-of-

acquisition effects). Regulars are best positioned to use

the remaining resources after damage. By contrast, all

three types of exception pattern exhibited sensitive

periods. In the case of EP3f exception patterns, the sensi-

tive period declined in a roughly linear fashion. These

verbs have arbitrary input–output mappings but high

token frequency in the training set, and their high token

frequency allows the best recovery of the exception

patterns. For EP1 and EP2 exception patterns, the decline

in recovery with age was steeper; perhaps one might call

these ‘‘critical’’ rather than sensitive periods. Overall, the

results show that within the same architecture, sensitive

and critical periods can appear in some parts of the

problem domain but not others, depending on the nature of

the mapping problem and on frequency effects.

Figure 3 plots the proportion of connections remaining

in one of the pathways of the network and depicts the

gradual reduction through pruning as well as the sudden

drop after lesion is applied at an early and a late point in

training. Importantly, although pruning was an endogen-

ous process, it was also influenced by activity-dependent

changes in the network. When a lesion occurred early in

training, the network was able to take advantage of the

remaining resources and fewer connections were pruned.

Developmental Psychobiology. DOI 10.1002/dev
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FIGURE 2 Performance of the network at the end of training (500 epochs) for five pattern classes

within past tense: Regular (e.g., talk-talked), Rule (wug-wugged), EP1 (hit-hit), EP2 (sing-sang),

and EP3f (go-went). The EP numbers mark increasing degrees of inconsistency with regular

mappings and the f registers the high token frequency of this class. Gray bars show normal

performance. Black bars show recovery after lesions at different points in training (0, 10, 50, 100,

250, 400, 450, and 490 epochs) with a fixed period of 500 epochs of training post-lesion. White bars

show the recovered level of performance at the end of normal training (e.g., a lesion at 490 epochs

will have only 10 epochs of training post lesion). Error bars depict standard errors over six

replications with different initial random seeds.
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in generating the sensitive periods observed in this model.

When the model was trained with fewer resources (units)

in the indirect pathway, sensitive periods appeared for all

pattern classes. When the normal network was trained

without pruning, none of the pattern classes exhibited

sensitive periods.

Figure 4(a) shows the relative functional specialization

of each pattern type to the direct (þve) or indirect (�ve)

pathways of the associative network. Figure 4(b) focuses

on one specific contrast in emergent specialization, rule

formation versus EP3f patterns, assessed across a fixed

period of recovery after damage. In the normal condition,

regular and rule generalization revealed partial speciali-

zation to the direct pathway, while exception patterns

showed differing degrees of specialization to the indirect

pathway. If both the routes of the network were damaged

prior to training, this immediately changed how each

pattern class used the two pathways. The indirect pathway

was relied upon more heavily. However, as damage

occurred later in training, this pattern progressively

changed, with increasing reliance on the direct pathway

to drive recovery (even when recovery time was con-

trolled). Two points are of note: first, we see here sensitive

periods for the emergence of specialized functional

structure, with different functional structures arising

depending on the time of damage. Second, for the

exception verbs, the sensitive period for functional

structure corresponded with a sensitive period for

behavior (i.e., the alternate functional structure was less

able to support recovery); but for regular verbs and rule

generalization, the sensitive period for functional struc-

ture had no corresponding sensitive period in behavior.

The sensitive periods for functional structure and for

behavior could, therefore, dissociate.

The explanation for these effects involves several

factors. Broadly, the results depend first on how well

different pattern types can exploit the resources remaining

at different points in training, based on their frequency and

similarity. Later lesions cause more reduction in resources

because they come on top of losses through pruning. Early

damage can retard the endogenous pruning process. Sys-

tematicity, high type frequency, and high token frequency,

all advantage a pattern class in making use of remaining

resources. Second, the two pathways have different

plasticity at an algorithmic level. It takes more training

to alter the two sets of connections arranged in series in the

indirect route than it takes to alter the single set in the

direct route. Third, later in training, connections in each

pathway become larger and if these connections are not

useful for driving behavior after damage, they take longer

to reset (an effect called ‘‘entrenchment’’). These three

factors interact to determine which pattern classes will

recover and how the two pathways will be used.

This simulation is useful because it can begin to

explore the relationship (and possible mismatch) between

sensitive periods in behavior and in the emergence of

specialized functional structure, but once more, similarity,

frequency, and resources mediated the effects. In terms of

Johnson (2005) proposals for how sensitive periods end,

this model implemented an endogenous process of

pruning. Yet even these endogenous factors interacted

with activity-dependent processes in fashioning the final

shape of the sensitive periods in plasticity.

Developmental Psychobiology. DOI 10.1002/dev
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FIGURE 3 The proportion of connections remaining in the direct pathway with the combined

effects of pruning (onset 100 epochs) and lesions, shown for the normal case, and for lesions after

10 epochs or 400 epochs of training. Similar functions were found for connections in the indirect

pathway. (A connection was pruned with 5% probability each epoch if its absolute value was less

than 0.5. Lesions probabilistically removed 75% of connections in both pathways).
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CONCLUSION

We began by endorsing the importance of specifying the

underlying computational mechanisms of plasticity

change in order to turn descriptions of sensitive periods

into explanations, and by arguing for the utility of im-

plemented neurocomputational models in this endeavor.

Implementation forces clarity, reveals hidden assump-

tions, and generates new candidate explanations and

testable hypotheses. In three examples, we illustrated

implementations of Johnson (2005) proposals for how

sensitive periods might end. In each case, implementation

demonstrated multiple additional factors at play that

interacted with the closing of sensitive periods, including

the similarity between representations, the frequency

with which certain experiences occurred, and resource

levels within the system. We believe that discovery of

the full repertoire of mechanisms through which func-

tional plasticity is modulated must rely on a program

of computational modeling integrated within the

multidisciplinary exploration of sensitive periods in

development.

Developmental Psychobiology. DOI 10.1002/dev
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FIGURE 4 (a) Relative specialization of each pattern class to the direct (þve) or indirect (�ve)

pathway at the end of training, for the normal network and networks recovering from damage at

different points in training. Specialization was assessed using the dissociation methodology of

traditional cognitive neuropsychology. [If a pattern class is more specialized to the direct than

indirect pathway, it should show a bigger deficit when the direct pathway experiences a further

lesion than when the indirect pathway is similarly lesioned. The figure shows the difference in the

size of the deficit for each pathway (see Thomas & Karmiloff-Smith, 2002, for details)]; (b) A

single comparison drawn from the above data, depicting the relative specialization of rule versus

EP3f patterns after a fixed recovery period following damage.
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