
 

Abstract

 

A review of empirical work suggests that the lexical represen-
tations of a bilingual’s two languages are independent (Smith,
1991), but may also be sensitive to between language similar-
ity patterns (e.g. Cristoffanini, Kirsner, and Milech, 1986).
Some researchers hold that infant bilinguals do not initially
differentiate between their two languages (e.g. Redlinger &
Park, 1980). Yet by the age of two they appear to have
acquired separate linguistic systems for each language (Lanza,
1992). This paper explores the hypothesis that the separation
of lexical representations in bilinguals is a functional rather
than an architectural one. It suggests that the separation may
be driven by differences in the structure of the input to a com-
mon architectural system. Connectionist simulations are pre-
sented modelling the representation of two sets of lexical
information. These simulations explore the conditions
required to create functionally independent lexical representa-
tions in a 

 

single

 

 neural network. It is shown that a single net-
work may acquire a second language after learning a first
(avoiding the traditional problem of catastrophic interference
in these networks). Further it is shown that in a single network,
the functional independence of representations is dependent
on inter-language similarity patterns. The latter finding is diffi-
cult to account for in a model that postulates architecturally
separate lexical representations.

 

Intr oduction

 

Studies involving children learning two languages indicate
that even as young as two years old they are aware that there
are two distinct languages present in the linguistically mixed
environment to which they are exposed. These children
acquire two separate language systems, and can be observed
to switch between the use of their two languages in a coher-
ent fashion, depending on the linguistic context negotiated
with their parents (Lanza, 1992). Adult bilinguals show a
high degree of skill in using either of their integrated lan-
guage systems, appearing to be able to set aside one of their
systems while operating in the other. The impression in both
of these cases is of functionally separate language systems.

Research in the language processing of adult bilinguals
has investigated how the bilingual’s two language systems
may be represented in his or her cognitive system. There are
several theories as to the relation of the two systems, but the
majority view is that there are separate lexical representa-

tions for each language, but combined semantic represen-
tations (see Smith, 1991, for a review). The evidence for
this view comes mainly from repetition and semantic
priming effects. Repetition priming effects are obtained
from tasks such as lexical decision, word fragment com-
pletion, and perceptual identification. Semantic priming
effects come mainly from recall performance and classifi-
cation tasks. Conclusions are based on the assumption that
if one task serves as a prime for a second, then it is access-
ing the same underlying representation. Although findings
are mixed, suggesting a sensitivity to experimental condi-
tions and task design (Durgunoglu and Roediger, 1987), it
appears that tasks which access semantic representations
allow priming between the bilingual’s two languages (e.g.
Caramazza and Brones, 1980; Kolers and Gonzalez, 1980;
MacLeod, 1976), but those that access lexical information
alone allow only priming within each language (e.g. Scar-
borough, Gerard, and Cortese, 1984; Watkins and Peynir-
cioglu, 1983). For example, in the case of a French-
English bilingual, if in some task, 

 

chien

 

 were followed by

 

dog,

 

 the response time to 

 

dog

 

 would be reduced if the task
involved, say, semantic classification, but not if it
involved, say, lexical decision.

There is also evidence to suggest that word similarity
plays a role in bilingual lexical processing. For example, if
a word exists in both languages (such as 

 

pain

 

 in French
and English) or is morphologically similar in each lan-
guage, between language priming effects have been found
(Cristoffanini, Kirsner, and Milech, 1986; Gerard and
Scarborough, 1989; Kerkman, 1984). Between language
interference at the lexical level has been found for words
that are legal in both languages but not for those that have
characteristics unique to each language (Grainger and
Beauvillain, 1987). This evidence implies that the lexical
representations of each language may not be as distinct as
previously thought. 

In this paper, we will explore the hypothesis that bilin-
gual lexical representation is best accounted for using a
model that stores both languages in a single network.
Recent work within the connectionist framework has
shown that a functional separation in psycholinguistic pro-
cessing need not be taken to imply separation at the level
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of mechanism (Rumelhart and McClelland, 1986; Plunkett
and Marchman, 1993). Here, we examine the possibility that,
for bilinguals, the description of their overall language sys-
tem as having two lexicons may merely be a functional one,
and that the evidence to date need not necessarily imply the
existence of two physically separate structures. We will
show that:

 

1. 

 

Two sets of lexical information can be stored in the
same network, even when training on the second set
follows that on the first (modelling the case of sec-
ond language acquisition). 

 

2. 

 

Second language learning in a single network
device can be achieved without catastrophic inter-
ference from the second language.

 

3. 

 

The network is sensitive to the similarity of words
in the two languages. Words that are dissimilar
show more functional independence than those that
are similar.

 

Learning two lexicons in a single network.

 

The independence of the representations underlying lexical
processing implies that there is no interference between
these representations. Learning independent representations
is easily achieved in a neural network by training on simulta-
neously presented orthogonal languages (i.e. those which
have no features in common). However in the case of second
language learning, where exposure to the second language
occurs only after the first has been learned, neural networks
experience the problem of Catastrophic Interference (CI). If
training on one set of patterns ceases and training on another
inconsistent set commences, information about the first set
may be overwritten. This disruption occurs since the same
connection weights are required to do a different job in
learning the mappings for each pattern set. With simultane-
ous training, the network has the opportunity to find a set of
weights that can do both jobs. But with sequential training,
the connections responsible for learning the first set are
changed so that they can learn the second, and this may dam-
age the network’s performance on the first set. In terms of
lexical representation, CI would translate into a second lan-
guage learner overwriting their first language with their sec-
ond, which clearly does not happen.

Standard solutions to CI have involved orthogonalizing
the representations for each input/output mapping, so that
they no longer use the same connections. Each new mapping
can be learned separately without disrupting any that have
been learned before (see Sharkey & Sharkey, 1994, for a
review of these techniques). However, such solutions cannot
be learned using a standard backpropagation network, and
more seriously, the ability of these networks to generalize
between patterns is lost. It is important to retain the generali-
zation between patterns if we are to capture the empirical
data on lexical processing. We require another solution to CI
that preserves generalization 

 

within

 

 lexicons but not between
them.

 

A Dual Route Model.

 

Within lexicon generalization would be easy to achieve in a
dual route model. A separate network would be devoted to
the representation of each lexicon. Generalization would
occur within each route, but since the routes were physically
separated, no generalization would take place between the
lexicons. A simple dual route model, however, fails to cap-
ture important characteristics of the data, namely that inter-
language similarity is significant in establishing the inde-
pendence of the representations. Furthermore, from the per-
spective of bilingual acquisition, no account is provided of
how the child discovers that there are two languages in its
linguistic environment and hence determines the need for a
dual-route representation.

Many researchers hold that infant bilinguals do not ini-
tially differentiate the two languages (e.g. Redlinger and
Park, 1980; Vihman, 1985). The one-system view of bilin-
gual development supposes that the bilingual child must
undergo a process of language differentiation through which
two separate linguistic systems are gradually formed. If a
child is to assign two routes to its system at a point when it
detects that there are two languages present, it would need
have some firm basis on which to make such a judgement.
The child should not, for instance, assign two routes to its
system merely because its parents have different accents, or
slightly different vocabularies. Yet it must, if they are using
different languages. Identifying the presence of two (or for
that matter three) languages is not a trivial matter, especially
if they are closely related. The decision to construct multiple
lexical representations would, therefore, appear to be contin-
gent upon a careful analysis of the characteristics of the
ambient linguistic environment.

The one-system view of bilingual development could, on
the other hand, be taken to suggest that the child starts out
with a single mechanism underlying its language learning,
but that this mechanism develops representations which
come to exhibit functional independence.

 

A Single Route Model.

 

A single route model of bilingual and lexical representation
would suppose that a single mechanism underlies lexical
processing in both children and adults. In the child, a single
route model need make no assumptions about differentiation
of the two languages at the onset of learning. Initially, the
languages are treated in an identical fashion and are only dif-
ferentiated by learning the pattern of characteristics unique
to each language. This suggests that the separation of repre-
sentations may be driven by differences in the structure of
the input to a common architectural system. In the adult, the
bilingual lexicons may have achieved a status of 

 

functional
modularity

 

 within the single mechanism though residual pat-
terns of interference between the two languages may be
observed for items that are similar in both linguistic systems. 

The issue as to whether single or dual mechanisms are
involved in bilingual language processing is not merely a



 

theoretical nicety. Each account has different implications
for our understanding of how languages are learned and for
the patterns of errors and mastery observed 

 

en route

 

 to the
mature adult system. Even in the mature adult state, residual
traces of the moulding forces of development can still be
observed and used to reconstruct that process.

 

Simulations.

 

Two simulations are presented in this paper. The first simula-
tion demonstrates that a single network can store information
about two separate lexicons even when training on the sec-
ond lexicon follows that on the first. In effect, this simulation
offers a solution to the problem of CI between distinct train-
ing sets in a network, while maintaining the desirable prop-
erty of generalization within a training set. The solution
requires no domain specific modifications to the backpropa-
gation algorithm. The second simulation addresses the prob-
lem of simultaneous acquisition of two partially overlapping
lexical systems. It demonstrates how the functional inde-
pendence of lexical items depends on their inter-language
similarity. It is argued that these results offer a plausible sim-
ulation of patterns of lexical priming in adult bilinguals and
language differentiation in the language learner.

 

Ar chitecture.

 

The simulations used 3-layer feedforward networks, trained
using the backpropagation algorithm. The networks were set
the task of autoencoding two sets of language-like informa-
tion. In the autoencoding task, a network usually has fewer
hidden units than input or output units. This hidden unit ‘bot-
tleneck’ forces the network to create a more efficient repre-
sentation of the sets of input patterns by removing
unnecessary redundancies. If the network is required to learn
two input sets, it must therefore discover the features that
characterize both those input sets.

 

Training sets.

 

Two sets of items were constructed for each simulation, cor-
responding to the lexical representations of simple words in
different languages. The input sets were constructed using
orthogonal representations for the encoding of individual
lexical constituents. This form of representation provided a
stringent method for controlling word similarity in each pair
of languages. The orthogonal word constituents can be
thought of as corresponding to either letters or phonemes.

Each language was defined in terms of its own set of
orthographic/phonological rules. The constituents were clas-
sified as consonants or vowels. Only certain combinations of
consonants and vowels were permissible in each language.
These rules were then used to generate tokens in the lan-
guage. The words were 3 letters/phonemes long with a
choice of 10 letters/phonemes in each position. Since we
used an orthogonal representation for the letters/phonemes,
the network required 30 input and output units to code the
lexical information.

 

Language Specific Units.

 

Bilinguals can selectively access information about either of
their two languages. If two languages are to be stored in a
single network, information specifying language member-
ship must therefore be associated with each item. We can
think of each item as being tagged for membership in a lan-
guage on the basis of language specific features available to
the language learner. For example, in spoken French there is
a tendency to nasalize phonemes, and Chinese is a tonal lan-
guage.

The information which distinguishes the two languages is
presented to the network on an extra set of Language Spe-
cific Input Units. Since the task is autoencoding, there is a
corresponding set of output units. Two orthogonal vectors
are used to represent this information. For example, if there
were two Language Specific Units, a vector of (1, 0) might
index one language, and a vector of (0, 1) the other. Figure 1
shows the network architecture.

 

Simulation 1.

 

Modelling second language acquisition in a single network
demands that we avoid disruption of the performance on the
first input set by training on the second. This disruption is
maximized when no information learned during training on
the first set is useful in learning the second set. There is no
advantage for the network to retain information about the
first input set, so the connections are changed maximally to
learn the second set. Simulation 1 explored the effect of var-
ying the amount of language tagging information available
to the network. This manipulation provided the opportunity
to evaluate the relative success of second language acquisi-
tion under conditions where inter-language differences could
be easily quantified.

To model the hardest case for second language acquisition,
two languages were constructed which were based on the
same orthographic/phonological rules but which used differ-
ent letters/phonemes. Each language comprised 32 words.
The rules and alphabets used are shown in Figure 2. The net-
work had the architecture shown in Figure 1, with 20 hidden
units used to enforce the representational bottleneck. 

The network was trained to autoassociate the words in L1.
When the error asymptoted, training on L1 ceased, and train-
ing on L2 commenced. The mean squared error on the Word
Output Units (see Figure 1) was measured for each language

 

Figure 1: Network Architecture.
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Word Input Units Language Specific Units

Word Output Units Language Specific Units



 

throughout this process. Simulations were repeated at four
levels of language specific tagging, namely where the
number of units tagging each language was

 

 1, 8, 15, 

 

and

 

 30.

 

Results.

 

The resulting learning profiles are shown in Figure 3a) to d).
Each figure plots the mean squared error on the Word Output
Units for all items in a training set, with the error for each
language plotted separately. Figure 3a) shows the error for
each language when the number of language separating units
is set to two. L1 improves in performance until it is virtually
error free. When training on the first language ceases and the
second language is introduced (after 500 epochs of learning),
the error on L1 increases while that on L2 gradually disap-
pears. In other words we observe catastrophic interference
from L2 on L1. However, as the number of language specific
units is increased, as shown in Figure 3b) to Figure 3d), there
is a decreasing level of catastrophic interference from L2 on
L1 during the second phase of training. By the time the
number of language specific units reaches 30 per language,
the catastrophic interference has disappeared. 

 

Discussion.

 

These results show that a single network can learn two lexi-
cons when training on the second follows that on the first,

 

provided there is sufficient language specific information to
separate the languages.

 

Increasing the amount of language specific information
eliminates catastrophic interference because it allows the
backpropagation algorithm greater scope to develop orthog-
onal internal representations for each language. The lan-
guage specific information that tags language membership
biases the network’s interpretation of the input sets so that
the representations it forms for each are quite different. Since

 

Figure 2: Languages used in Simulation 1.

 

L1:

 

Vowels: o, i.
Consonants: f, p, g.

 

Rules: 

 

Vowels: a, e.

 

L2:

 

Consonants: b, t, c.

 

Alphabet: Alphabet:

 

CVV, CVC, VCV, VVC

 

Figure 3: Graphs a) to d) show the elimination of Catastrophic Interference as the number of Language Specific Units is 
increased
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these representations are different, the weights from which
they emerge tend to be different: training on L2 no longer
tends to change weights that contain information about L1. If
one imagines the network defining a representational space,
then the bias that the language specific information provides
allows the network to partition this space and place each lan-
guage in a different partition.

Although the representational resources to avoid cata-
strophic interference are costly, there is little evidence to
suggest that the neural substrate for language acquisition is a
limiting factor. For example, there is evidence that children
have up to 50% more brain cell connections than adults (Col-
lins & Kuczaj, 1991, p.50).

The simulation outlined here depicts the most extreme
case of second language acquisition, where learning the sec-
ond language occurs without any further exposure to the first
language. Second language acquisition occurs more often in
the context of continued first language usage, serving as
additional language exposure rather than as a replacement.
This simulation shows that catastrophic interference is
avoidable in the most extreme case. The more usual case
would be easier for the network to solve, since input sets
would be trained with an element of simultaneity.

The simulation does not, however, offer us the opportunity
to examine the role of inter-language similarity in bilingual
language processing, since by design there is no similarity
between the languages at all. This was the goal of the next
simulation.

 

Simulation 2.

 

This simulation demonstrates two points. Firstly, similarity
is important in establishing the independence of lexical rep-
resentations in a single network. Secondly, as well as simu-
lating data difficult to account for in the simple dual route
approach, a single network simulates human data previously
taken as strong evidence of separate lexical representations.

 

Similarity Effects.

 

Two languages were constructed which shared the same let-
ters/phonemes and 3 out of 4 orthographic/phonological



 

rules. The rules are shown in Figure 4. Words in each lan-
guage could be categorized into three classes in the follow-
ing way:

 

(1)

 

Those that exist in both languages.

 

(2)

 

Those that are legal in both languages but exist in
only one language.

 

(3)

 

Those that exist and are legal in only one language.
Examples taken from French and English fulfilling these cri-
teria are (1) 

 

pain

 

 & 

 

pain

 

, (2) 

 

trop

 

 & 

 

time

 

, and (3) 

 

soeur

 

 &

 

cough

 

 respectively. The word classes were constructed to
reflect a similarity gradient between the languages.

Each language comprised 78 words. The network was
trained on both languages simultaneously. To reflect the
greater similarity of the languages, only eight units were
used to code the language specific information. In order to
store the greater number of patterns, 45 hidden units were
used

 

1

 

.

 

Results.

 

Figure 5a) summarizes how the network represents words
from the three classes outlined above. The hidden unit acti-
vation obtained when a word is presented to the network
may be thought of as a point in representational space. For
each class, the hidden unit activations for all the words in
that class were averaged together to define its ‘centre of
gravity’ in representational space. This graph shows the dis-
tance between the centres of gravity for the same classes in
each language. It shows that words that exist in both lan-
guages (Class 1) are closest together in this space. Words
that exist and are legal in only one language (Class 3) are

 

1. Other simulations indicated that increasing the number of hidden
units actually served to partition the representational space less
adequately. Greater numbers of hidden units led to the languages
being less separated in this space, and thus less independent.

 

Vowels: a, e, i, o, u. Consonants: s, t, b, g, p.

 

L1 Rules:

 

 

High frequency: 4 duplications in the input set.
Low frequency: 1 token in the input set.

CVV, CVC, VCV, VVC.

 

Alphabet:

 

CVV, CVC, VCC, VVC.

 

L2 Rules:

 

 

Figure 4: Languages used in Simulation 2.

 

Figure 5: a) Distance between Word Classes; b) Class 1: 
Error by frequency
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furthest apart. Words that exist in one language but are legal
in the other (Class 2) represent an intermediate case.

 

Discussion.

 

Studies that have investigated bilingual lexical representa-
tion (and the importance of similarity in processing) have
used priming paradigms. In the context of the network mod-
els employed here, priming may be thought of as activation
persisting in a network. The more similar the activation is
between two words, the more likely it is that activation per-
sisting from processing one word will facilitate processing of
the next word, and therefore serve as a prime for the next
word. The distance between two points in representational
space is a measure of the similarity of two patterns of activa-
tion. Figure 5a) can therefore be interpreted as a measure of
the degree to which words within a class will prime words in
the same class in the other language. 

Recall that in experiments using the lexical decision task,
priming between languages was found for words that existed
in both languages, i.e. Class 1 words (e.g. Gerard and Scar-
borough, 1989). Cristoffanini et al (1986) found between
language priming to a slightly lesser degree for morphologi-
cally similar but not identical words, corresponding to Class
2 words. Scarborough et al (1984) found no priming for
orthographically distinct translation equivalents, correspond-
ing roughly to Class 3 words.

This simulation shows that the similarity gradient in the
input between the languages translates into the functional
independence of the representations.

 

Frequency Effects.

 

Words in Class 1 may have a different meaning in each lan-
guage (for example 

 

pain

 

 means bread in French). In such
cases, it is likely that the same lexical item will have a differ-
ent frequency in each language. Using such words, Gerard
and Scarborough (1989) showed that Spanish-English bilin-
guals responded in a lexical decision task according to the

 

within language

 

 frequency. They interpreted this evidence as
favouring the view that the lexical representations for each
were independent.

To examine this issue in the model, words were defined as
having a high or low frequency. High frequency words were
presented to the network four times as often during training.
For the words existing in both languages, half were high fre-
quency in L1 and low frequency in L2, the other half high
frequency in L2 and low frequency in L1. In networks mod-
elling lexical representation, it has been shown that the error
score which results when a word is presented to a network
may in some circumstances be interpreted as equivalent to a
subject’s reaction time in the lexical decision task (Seiden-
berg and McClelland, 1989). In this part of the simulation,
we examined the error score for words in Class 1 in both lan-
guages. An additional simulation was performed in an
attempt to control for absolute levels of error score separat-
ing high frequency and low frequency words. This control



 

involved training each language on a separate network with
30 input and output units and 22 hidden units.

 

Results & Discussion.

 

Figure 5b) shows the mean squared error when the network
was tested on the Class 1 words, split by frequency. Since
both languages show the same pattern of results, we depict
the error scores for both languages averaged together. The
results from the control simulation are shown on the same
graph. This figure shows that performance on these words
varies with within language frequency. Lower error scores
are observed for high frequency words, even though these
words have the same form and are stored in the same net-
work. There is only a small difference between the error
scores for the single and separate network solutions. We
interpret the lower error scores for high frequency words as
indicating faster response times to high frequency words
than low frequency words. Hence within language frequency
effects can be observed even when both languages are repre-
sented in the same device.

 

Conclusions.

 

In this paper, we have offered a solution to the logical prob-
lem of how a child can simultaneously acquire two lan-
guages without the need for innate assumptions concerning
the cognitive architecture required to represent these lan-
guages, yet as adults show behavior suggesting separate
routes for the processing of lexical information in each lan-
guage. Evidence for independent lexical representations may
be taken as a functional description of the behavior of a sin-
gle mechanism. Furthermore, second language acquisition
can be achieved in a single network whilst avoiding the
potential problem of catastrophic interference. Importantly,
the single network model can account for data that a simple
dual route model cannot account for, namely the role of sim-
ilarity in lexical processing, and can also simulate sensitivity
to within language frequency—a finding that has previously
been taken as strong evidence for separate lexical representa-
tions in bilinguals.
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