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Abstract tions for each language, but combined semantic represen-

. - . tations (see Smith, 1991, for a revieWhe evidence for
A review of empirical work suggests that the lexical represen- . . . L .
tations of a bilinguat two languages are independent (Smith, (IS Vview comes mainly from repetition and semantic
1991), but may also be sensitive to between language similar priming efects. Repetition priming fefcts are obtained
ity patterns (e.g. Cristt#nini, Kirsner and Milech, 1986). from tasks such as lexical decision, word fragment com-
Some researchers hold that infant bilinguals do not initially pletion, and perceptual identiéition. Semantic priming
differentiate between their two languages (e.g. Redlinger & effects come mainly from recall performance and classifi
Park, 1980).Yet by the age of two they appear to have . . .
acquired separate linguistic systems for each language (Lanza,Cation tasks. Conclusions are based on the assumption that
1992).This paper explores the hypothesis that the separation if one task serves as a prime for a second, then it is access-
of lexical representations in bilinguals is a functional rather ing the same underlying representatidlthough findings
than f':ln architectural On.e. It suggests that the Separation maygre mixed, Suggesting a Sensitivity to experimentai condi-
be driven by diierences in the structure of the input to a com- tions and task design (Dyunoglu and Roediget 987), it
mon architectural system. Connectionist simulations are pre- . . .
sented modelling the representation of two sets of lexical aPPears that tasks which access semantic representations
information. These simulations explore the conditions allow priming between the bilingualtwo languages (e.g.
required to create functionally independent lexical representa- Caramazza and Brones, 1980; Kolers and Gonzalez, 1980;
tions in asingleneural network. It is shown that a single net-  \MacLeod, 1976), but those that access lexical information

work may acquire a second language after learningsa fi . i .
(avoiding the traditional problem of catastrophic interference alone allow only priming within each language (e.g. Scar

in these networks). Further it is shown that in a single network, Porough, Gerard, and Cortese, 1984tkins and Peynir
the functional independence of representations is dependentcCioglu, 1983). For example, in the case of a French-
on interlanguage similarity patternghe latter finding is difi- English bilingual, if in some taskhienwere followed by
cult to account for in a model that postulates architecturally dog, the response time tiog would be reduced if the task
separate lexical representations. involved, say semantic classifation, but not if it
involved, saylexical decision.
Intr oduction There is also evidence to suggest that word similarity
plays a role in bilingual lexical processing. For example, if
Studies involving children learning two languages indicatea word exists in both languages (suchpa® in French
that even as young as two years old they are aware that theiigd English) or is morphologically similar in each lan-
are two distinct languages present in the linguistically mixeduage, between language primintgefs have been found
environment to which they are exposeékhese children (Cristoffanini, Kirsner and Milech, 1986; Gerard and
acquire two separate language systems, and can be obserge@rborough, 1989; Kerkman, 1984). Between language
to switch between the use of their two languages in a cohehterference at the lexical level has been found for words
ent fashion, depending on the linguistic context negotiatethat are legal in both languages but not for those that have
with their parents (Lanza, 1992)dult bilinguals show a characteristics unique to each language (Grainger and
high degree of skill in using either of their integrated lan-Beauvillain, 1987)This evidence implies that the lexical
guage systems, appearing to be able to set aside one of theisresentations of each language may not be as distinct as
systems while operating in the othEhe impression in both previously thought.
of these cases is of functionally separate language systems. In this paperwe will explore the hypothesis that bilin-
Research in the language processing of adult bilingualgual lexical representation is best accounted for using a
has investigated how the bilingumltwo language systems model that stores both languages in a single network.
may be represented in his or her cognitive systérare are  Recent work within the connectionist framework has
several theories as to the relation of the two systems, but teBown that a functional separation in psycholinguistic pro-
majority view is that there are separate lexical representaessing need not be taken to imply separation at the level
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of mechanism (Rumelhart and McClelland, 1986; Plunkett A Dual Route Model.

and Marchman, 1993). Here, we examine the possibility thatithin lexicon generalization would be easy to achieve in a
for bilinguals, the description of their overall language sysdual route modelA separate network would be devoted to
tem as having two lexicons may merely be a functional onghe representation of each lexicon. Generalization would
and that the evidence to date need not necessarily imply tlecur within each route, but since the routes were physically
existence of two physically separate structuhe will separated, no generalization would take place between the
show that: lexicons.A simple dual route model, howeyéails to cap-

1. Two sets of lexical information can be stored in the  ture important characteristics of the data, namely that-inter

follows that on the fst (modelling the case of sec- pendence of the representations. Furthermore, from the per
ond language acquisition). spective of bilingual acquisition, no account is provided of
2. Second language learning in a single network how the child discovers that there are two languages in its
device can be achieved without catastrophic inter linguistic environment and hence determines the need for a
ference from the second language. dual-route representation.
3. The network is sensitive to the similarity of words Many researchers hold that infant bilinguals do inet
in the two languagesWords that are dissimilar tially differentiate thetwo languages (e.g. Redlinger and
show more functional independence than those that ~Park, 1980Vihman, 1985)The one-system view of bilin-
are similar gual development supposes that the bilingual child must
undego a process of languagefdientiation through which
Learning two lexicons in a single netark. two separate linguistic systems are gradually formed. If a

child is to assign two routes to its system at a point when it
The independence of the representations underlying lexicgktects that there are two languages present, it would need
processing implies that there is no interference betweeRsye some fin basis on which to make such a judgement.
these representations. Learning independent representatiofige child should not, for instance, assign two routes to its
is easily achieved in a neural network by training on simultasystem merely because its parents havereifit accents, or
neously presented orthogonal languages (i.e. those whigfightly different vocabulariestet it must, if they are using
have no features in common). However in the case of secopgtferent languages. Identifying the presence of two (or for
language learning, where exposure to the second languagfyt matter three) languages is not a trivial magtepecially
occurs only after therSt has been learned, neural networksi they are closely relate@he decision to construct multiple
experience the problem of Catastrophic Interference (CI). liexical representations would, therefore, appear to be contin-
training on one set of patterns ceases and training on anothﬁm upon a careful analysis of the characteristics of the
inconsistent set commences, information about tisé et 5mpient linguistic environment.
may be overwrittenThis disruption occurs since the same The one-system view of bilingual development could, on
connection weights are required to do afedént job in  {he other hand, be taken to suggest that the child starts out
learning the mappings for each pattern ¥éth simultane-  ith a single mechanism underlying its language learning,

ous training, the network has the opportunity talfa set of byt that this mechanism develops representations which
weights that can do both jobs. But with sequential trainingggme to exhibit functional independence.

the connections responsible for learning thet feet are
changed so that they can learn the second, and this may dam- A Single Route Model.
age the network’ performance on therdt set. In terms of A single route model of bilingual and lexical representation
lexical representation, Cl would translate into a second larwould suppose that a single mechanism underlies lexical
guage learner overwriting theirgt language with their sec- processing in both children and adults. In the child, a single
ond, which clearly does not happen. route model need make no assumptions abofareliftiation
Standard solutions to Cl have involved orthogonalizingof the two languages at the onset of learning. Initiahg
the representations for each input/output mapping, so thi&inguages are treated in an identical fashion and are only dif-
they no longer use the same connections. Each new mappifegentiated by learning the pattern of characteristics unique
can be learned separately without disrupting any that hauwe each languag&his suggests that the separation of repre-
been learned before (see Sharkey & Shark®@4, for a  sentations may be driven by féifences in the structure of
review of these techniques). Howevsuich solutions cannot the input to a common architectural system. In the adult, the
be learned using a standard backpropagation network, apilingual lexicons may have achieved a statufunttional
more seriouslythe ability of these networks to generalize modularitywithin the single mechanism though residual pat-
between patterns is lost. It is important to retain the generalierns of interference between the two languages may be
zation between patterns if we are to capture the empiricalbserved for items that are similar in both linguistic systems.
data on lexical processingle require another solution to CI  The issue as to whether single or dual mechanisms are
that preserves generalizatisithin lexicons but not between involved in bilingual language processing is not merely a
them.



theoretical nicetyEach account has téfent implications Language Specifi Units.

for our understanding of how languages are learned and f&ilinguals can selectively access information about either of
the patterns of errors and mastery obseemadbuteto the their two languages. If two languages are to be stored in a
mature adult system. Even in the mature adult state, residugihgle network, information specifying language member
traces of the moulding forces of development can still behip must therefore be associated with each ii.can

observed and used to reconstruct that process. think of each item as being tagged for membership in a lan-
guage on the basis of language spedédatures available to
Simulations. the language learnefor example, in spoken French there is

) ) o o a tendency to nasalize phonemes, and Chinese is a tonal lan:
Two simulations are presented in this papge frst simula-  gyage.

tion demonstrates that a single network can store information The information which distinguishes the two languages is
about two separate lexicons even when training on the Sefresented to the network on an extra set of Language Spe-
ond lexicon follows that on thert. In efect, this simulation  cific Input Units. Since the task is autoencoding, there is a
offers a solution to the problem of ClI between distinct traintorresponding set of output unifBwo orthogonal vectors

ing sets in & network, while maintaining the desirable propare used to represent this information. For example, if there
erty of generalization within a training séthe solution \yere two Language SpedfUnits, a vector of (1, 0) might

requires no domain specifmodifications to the backpropa- index one language, and a vector of (0, 1) the oFfigure 1
gation algorithmThe second simulation addresses the probgnows the network architecture

lem of simultaneous acquisition of two partially overlapping
lexical systems. It demonstrates how the functional inde- (Word Output Units) (Language Specift Units)
pendence of lexical items depends on their il#Bguage

similarity. It is agued that these resultdafa plausible sim-
ulation of patterns of lexical priming in adult bilinguals and C Hidden Units
language ditrentiation in the language learner

Ar chitecture. /

The simulations used 3-layer feedforward networks, trained (Word Input Units ) (Language Specifi Units)
using the backpropagation algorithiihe networks were set

the task of autoencoding two sets of language-like informa- Figure 1 NetworkArchitecture.
tion. In the autoencoding task, a network usually has fewer
hidden units than input or output unithis hidden unit ‘bot- Simulation 1.

tleneck’forces the network to create a moréogént repre-

sentation of the sets of input patterns by remo\,md\/lodelling second language acquisition in a single network
unnecessary redundancies. If the network is required to leafigmands that we avoid disruption of the performance on the
two input sets, it must therefore discover the features thaSt input set by training on the secofidhis disruption is

characterize both those input sets. maximized when no information learned during training on
the first set is useful in learning the second $&kre is no
Training sets. advantage for the network to retain information about the

Two sets of items were constructed for each simulation, cofirst input set, so the connections are changed maximally to
responding to the lexical representations of simple words ilearn the second set. Simulation 1 explored tfexebf var
different languagesThe input sets were constructed usingying the amount of language tagging information available
orthogonal representations for the encoding of individualo the networkThis manipulation provided the opportunity
lexical constituentsThis form of representation provided a to evaluate the relative success of second language acquisi-
stringent method for controlling word similarity in each pairtion under conditions where intlmguage dierences could
of languages.The orthogonal word constituents can bebe easily quantiéid.
thought of as corresponding to either letters or phonemes.  To model the hardest case for second language acquisition,
Each language was dedid in terms of its own set of two languages were constructed which were based on the
orthographic/phonological ruleShe constituents were clas- same orthographic/phonological rules but which usedrelif
sified as consonants or vowels. Only certain combinations @t letters/phonemes. Each language comprised 32 words.
consonants and vowels were permissible in each languagBhe rules and alphabets used are showigare 2 The net-
These rules were then used to generate tokens in the lamork had the architecture shownkigure 1 with 20 hidden
guage.The words were 3 letters/phonemes long with aunits used to enforce the representational bottleneck.
choice of 10 letters/phonemes in each position. Since we The network was trained to autoassociate the words in L1.
used an orthogonal representation for the letters/phonemé&’hen the error asymptoted, training on L1 ceased, and train-
the network required 30 input and output units to code th#g on L2 commenced.he mean squared error on ¥verd
lexical information. Output Units (se€igure ) was measured for each language
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Figure 3 Graphs a) to d) show the elimination of Catastrophic Interference as the number of Languagel Syisaii

increased

throughout this process. Simulations were repeated at fogiese representations arefeliént, the weights from which
levels of language spedfitagging, namely where the they emege tend to be diérent: training on L2 no longer
number of units tagging each language Wa8, 15and30.  tends to change weights that contain information about L1. If

L1: L2: one imagines the network deifig a representational space,
Alphabet: Alphabet: then the bias that the language spedifformation provides
Vowels: o, i. Vowels: a, e. allows the network to partition this space and place each lan-
Consonants: f, p, gConsonants: b, t, c. guage in a dférent partition.
Rules: CVV, CVC,VCV,VVC Although the representational resources to avoid cata-
i _ i strophic interference are costlihere is little evidence to
Figure 2 Languages used in Simulation 1. suggest that the neural substrate for language acquisition is a
limiting factor. For example, there is evidence that children
Results. have up to 50% more brain cell connections than adults (Col-
The resulting learning prodis are shown ifrigure &) to d).  lins & Kuczaj, 1991, p.50).
Each fgure plots the mean squared error onvtloed Output The simulation outlined here depicts the most extreme

Units for all items in a training set, with the error for eachcase of second language acquisition, where learning the sec-
language plotted separateRigure 3) shows the error for ond language occurs without any further exposure tortte fi
each language when the number of language separating unégsguage. Second language acquisition occurs more often in
is set to two. L1 improves in performance until it is virtually the context of continuedrit language usage, serving as
error free When training on thert language ceases and theadditional language exposure rather than as a replacement.
second language is introduced (after 500 epochs of learning)his simulation shows that catastrophic interference is
the error on L1 increases while that on L2 gradually disapavoidable in the most extreme ca3&e more usual case
pears. In other words we observe catastrophic interferenegould be easier for the network to solve, since input sets
from L2 on L1. Howeveras the number of language specifi would be trained with an element of simultaneity

units is increased, as showrFigure d) toFigure 2), there The simulation does not, howeyeffer us the opportunity

is a decreasing level of catastrophic interference from L2 oto examine the role of intéanguage similarity in bilingual

L1 during the second phase of training. By the time théanguage processing, since by design there is no similarity
number of language specifunits reaches 30 per language,between the languages at dlhis was the goal of the next
the catastrophic interference has disappeared. simulation.

Discussion. _ _ Simulation 2.
These results show that a single network can learn two lexi- ] ) o
cons when training on the second follows that on thss, fi This simulation demonstrates two points. Firstiynilarity

provided thee is suficient languge specifi information to is important in establishing the independence of lexical rep-
sepaate the languges. resentations in a single network. Secondly well as simu-
Increasing the amount of language spedififormation lating data dificult to account for in the simple dual route
eliminates catastrophic interference because it allows tr@PProach, a single network simulates human data previously
backpropagation algorithm greater scope to develop orthoéake” as strong evidence of separate lexical representations.
onal internal representations for each langudde lan-

guage specifi information that tags language membership_l_ | Slmllantty Ef[fe(;:ts.h_ h shared th let
biases the network’interpretation of the input sets so that Wo languages were constructed which shared the same let-

the representations it forms for each are quifemdnt. Since ters/phonemes and 3 out of 4 orthographic/phonological



rules.The rules are shown iRigure 4 Words in each lan- furthest apartWords that exist in one language but are legal
guage could be categorized into three classes in the follovia the other (Class 2) represent an intermediate case.
ing way:

(1) Those that exist in both languages. Discussion.
(2) Those that are legal in both languages but exist itudies that have investigated bilingual lexical representa-
only one language. tion (and the importance of similarity in processing) have

(3) Those that exist and are legal in only one language. used priming paradigms. In the context of the network mod-
Examples taken from French and English finfi these cri-  €ls employed here, priming may be thought of as activation
teria are (1)pain & pain, (2) trop & time, and (3)soeur& persisting in a networklThe more similar the activation is
cough respectively The word classes were constructed tobetween two words, the more likely it is that activation per
reflect a similarity gradient between the languages. sisting from processing one word will facilitate processing of

Each language comprised 78 word$ie network was the next word, and therefore serve as a prime for the next
trained on both languages simultaneoudly refect the Wword. The distance between two points in representational
greater similarity of the languages, only eight units werépace is a measure of the similarity of two patterns of activa-
used to code the language spedififormation. In order to tion. Figure &) can therefore be interpreted as a measure of
store the greater number of patterns, 45 hidden units wetge degree to which words within a class will prime words in
used. the same class in the other language.

Recall that in experiments using the lexical decision task,
Alphabet:Vowels: a, e, i, 0, u. Consonants: s, t, b, 9, f  priming between languages was found for words that existed
L1 Rules: L2 Rules: in both languages, i.e. Class 1 words (e.g. Gerard and Scar
CVV, CVC,VCV, VVC. CVV, CVC,VCC,VVC. borough, 1989). Cristtdnini et al (1986) found between
language priming to a slightly lesser degree for morphologi-
High frequency: 4 duplications in the input se|  caly similar but not identical words, corresponding to Class
Low frequency. 1 token in the input set. 2 words. Scarborough et al (1984) found no priming for
Figure 4 Languages used in Simulation 2. orthographically distinct translation equivalents, correspond-
ing roughly to Class 3 words.

This simulation shows that the similarity gradient in the
'g]put between the languages translates into the functional
independence of the representations.

Results.

Figure &) summarizes how the network represents word
from the three classes outlined aboVke hidden unit acti-
vation obtained when a word is presented to the network Frequency Effects.

may be thought of as a point in representational space. FWords in Class 1 may have afdient meaning in each lan-

each class, the hidden unit activations for all the words 'Buage (for exampl@ain means bread in French). In such
that class were averaged together tongeits ‘centre of cases, it is likely that the same lexical item will have fedif

gravity’ in representational spackhis graph shows the dis- ent frequency in each language. Using such words, Gerard

tance between the centres of gravity for the same classesdﬂd Scarborough (1989) showed that Spanish-English bilin-
each language. It shows that words th".ﬂ eX.'St in both Iarb’uals responded in a lexical decision task according to the
guages (Class 1) are cI_osest together in this spuoms within languae frequencyThey interpreted this evidence as
that exist and are legal in only one language (Class 3) afgvouring the view that the lexical representations for each
were independent.

To examine this issue in the model, words werenddfias
having a high or low frequencidigh frequency words were
presented to the network four times as often during training.
For the words existing in both languages, half were high fre-
qguency in L1 and low frequency in L2, the other half high
frequency in L2 and low frequency in L1. In networks mod-
elling lexical representation, it has been shown that the error

11

I
[N

- Single

N

o

2
|

—5— Separate

-
|

o
©
1

Euclidean Distance
© =
ol o
| |
Mean Squared Error (1000ths)

9 T T

o
)

Class1 Class2 Class3 High Low score which results when a word is presented to a network
Word Class Frequency . . . .
(@) (b) may in some circumstances be interpreted as equivalent to a

subjects reaction time in the lexical decision task (Seiden-
berg and McClelland, 1989). In this part of the simulation,
we examined the error score for words in Class 1 in both lan-
1. Other simulations indicated that increasing the number of hiddeguages.An additional simulation was performed in an
units actually served to partition the representational space lesgtempt to control for absolute levels of error score separat-

adequatelyGreater numbers of hidden units led to the languageig high frequency and low frequency wordis control
being less separated in this space, and thus less independent.

Figure 5 a) Distance betweeiord Classes; b) Class 1.
Error by frequency
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