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Abstract.

This thesis is concerned with the implications of distributed representation for models of bilingual lexical processing. A review of the empirical literature shows evidence that the bilingual has an independent ‘mental dictionary’ for each language. The evidence comes predominantly from repetition priming data and frequency effects in bilingual lexical decision tasks. However, there are some indications of between language similarity effects, whereby, for instance words behave differently if they exist in both languages. Two hypotheses are considered as an explanation for these effects: (1) they arise from the nature of the underlying representations. A connectionist model of bilingual lexical word recognition, based on Seidenberg and McClelland’s (1989) reading framework, is introduced. This model stores both languages over a single set of distributed representations and can demonstrate both behaviour suggesting separate dictionaries as well as the relevant between language similarity effects; (2) the similarity effects arise from the nature of the control processes co-ordinating the operation of independent representations (e.g. separate dictionaries compete or co-operate in recognising words). Experiments are presented using English-French bilinguals, which explore the role of between language similarity in the bilingual’s attempts to co-ordinate responses according to each of their mental dictionaries. It is concluded that both of the two hypotheses have some merit, but that the representational account is more satisfactory in its explicit specification and in its parsimony. However, some difficulties remain for the distributed account with regard to second language acquisition. It is not obvious how a second language may be introduced into a network already representing a first language without damaging the pre-existing knowledge. Some ideas are presented as to how this problem may be overcome. Finally, some more general conclusions are drawn regarding the relation of distributed representations to single route and dual route models of cognitive processes. It is speculated that this distinction may dissolve using certain sorts of learning algorithm constructed to avoid catastrophic interference.
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Long Abstract.

Distributed representations have been employed in a range of models of human cognitive processes. In a distributed system, many computations are carried out using the same representational resource. This project is interested with finding the edges of distributed representations; that is, when should we see sets of computations as falling within the same distributed representational resource, and when should we see them as falling within separate resources. This question is examined with regard to a specific case study, that of bilingual lexical representation. Here the aim is to extend the existing monolingual distributed model of word recognition (Seidenberg and McClelland, 1989; Plaut, Seidenberg, McClelland, and Patterson, 1996) to the bilingual case. When we use distributed representations, does it look like the bilingual has two mental dictionaries (one for each language) or a single distributed dictionary containing both languages?

We begin the thesis by introducing monolingual theories of lexical representation: the core empirical evidence which constrains them, and the principal models. These are the serial search model, the interactive activation model, and the distributed model. We will later see that the serial search and interactive activation models have been extended to the bilingual case, but that this has yet to be attempted with the distributed model. It is noted that only the distributed model offers the potential to generate a parsimonious account of how language representations might be acquired.

In Chapter 3, we review the evidence regarding bilingual lexical representation. By and large this research has sought to discover whether the bilingual has one combined ‘store’ for their word knowledge, or separate stores for each language. We review three types of research: neuropsychological, psycholinguistic, and developmental.

The neuropsychological evidence shows some evidence of differential impairment of languages in bilinguals after brain damage, but none of the evidence is sufficient to demonstrate anatomically separate language systems (Paradis, 1995).

The psycholinguistic approach to the one or two stores question is to find out whether operations in one language affect later operations in the other language: for example, if I recognise a word in English, does that help me recognise its translation equivalent in French ten minutes later? (The answer is no). This is an example of a priming effect, and these tend to be employed with experimental tools such as the lexical decision task. The reasoning behind the psycholinguistic approach is as follows: if recognition in one language operates independently of the recognition in the other, then the stores must be separate; if there is between language priming, then the languages must be stored in a single system which can mediate these priming effects. When the empirical evidence is brought to bear, the conclusion is that bilinguals have independent representations of lexical knowledge for each language, but a common set of semantic representations (Smith, 1991). Operations accessing word form information do not transfer between languages. Operations accessing semantic information do transfer between languages. One or two complications to this picture are also explored.

The developmental evidence is of two types: the simultaneous acquisition of two languages, and the later acquisition of a second language. Infant studies regarding simultaneous acquisition do not turn out to be useful for resolving questions of representation (Genesee, 1989). Second language acquisition appears to produce a set of lexical representations similar to those acquired by simultaneous acquisition (Potter, So, Von Eckardt, and Feldman, 1984).

In the rest of Chapter 3, we consider existing models of bilingual lexical representation. There are a number of views: that monolingual models can cope unchanged with the bilingual case, merely relying on the difference between words in each language to distinguish them (Kirsner, Lalor, and Hird, 1993); that the serial access model may be extended by postulating separate word lists for each language; that the interactive activation model can be extended by connecting the word units of each language to a separate ‘language node’ so differentiating their behaviour (Grainger and Dijkstra, 1992). The crucial evidence put forward to distinguish the models relates firstly to the fact that bilinguals take time to switch between recognising words in each language, and secondly to the fact that words in one language will be recognised more slowly if they resemble words of the other language more closely than they resemble words in their own (known as between language neighbourhood effects). On the basis of each model’s adequacy in accounting for these effects, Grainger and Dijkstra conclude that an extension of the interactive activation model, with added language nodes, is most appropriate. Once again, however, these models are static, final state accounts. They do not consider how their representations might be developed.

In Chapter 4 we consider possible ways to extend the distributed framework to the bilingual case. We consider three hypotheses: The No Change (NC) model, The Bilingual Single Network (BSN) model, and the Bilingual Independent Networks (BIN) model. The NC model uses the monolingual system to learn the words in both languages. Unfortunately, the model cannot learn word forms which have a different meaning in each language (non-cognate homographs, such as PAIN and FIN in French and English), since networks are unable to learn two different mappings from the same input. Nor can the model account for the fact that between language neighbourhoods are inhibitory while within language neighbourhoods are facilitatory, since it does not support the within/between distinction. On these grounds, the NC model is discarded. The BSN model employs a similar architecture to the monolingual model, but tags each word by its language membership: both languages are stored in the same set of distributed representations. In the BIN model, information about each language is stored in a physically separate network. 

Our aim is to evaluate the BSN and BIN models (although in the final analysis, we will question whether they must necessarily be distinct). To explore the implications of the BSN model, we then run a ‘toy’ simulation. A small connectionist network is trained on two word sets, and its internal representations examined. The results show that language information stored in the same network will interfere if it is similar. The literature is re-examined with this result in mind, and a large number of studies (approximately 30) are found demonstrating between language similarity effects in bilingual lexical processing.

We then examine the implications of developmental evidence for the BSN and BIN models. The Single Network model is appropriate for simultaneous acquisition (the network is trained on both languages at once) but has problems with explaining second language acquisition: How can a second language be introduced into a single network without overwriting the first language already stored there? (This is the so-called problem of Catastrophic Interference.) The Independent Networks model deals straightforwardly with second language acquisition (use a different network) but has difficulty in justifying how an infant would know to employ separate representational resources when exposed to a world with two languages.

In sum, any model of bilingual lexical representation must explain the mixture of evidence pointing to the independence of lexical representations, and evidence of between language similarity effects. The rest of the thesis takes between language similarity effects to be the key data to distinguish between the BSN and BIN models, and examines how the respective models might account for them. First the BSN model is evaluated by constructing and testing a computer model (Chapters 5-8). Then the assumptions of the BIN model are evaluated by empirical experimentation (Chapters 9-10). In Chapter 11, the respective claims of the two models are evaluated.

The BSN account starts by filling in a missing step in the argument. The BSN model will be evaluated by how well it simulates empirical findings on, among other things, between language priming effects in the lexical decision task. However, it is not clear that the monolingual framework has any consistent account of the range of priming effects found in this task. Since priming affects form half of the evidence used in bilingual lexical processing, this is a serious shortcoming. To rectify this situation, in Chapters 5 and 6, initial simulations are carried out to show how the monolingual distributed framework can explain priming effects. This requires pulling together the strands of many approaches into a unified account.

Next the BSN model is constructed. Natural languages are too complex to employ in an initial model. Thus a connectionist network is trained to map between the word forms and meanings for two artificially created mini-languages. Words are tagged by language membership, but the network stores both languages across the same set of distributed representations. The model’s performance is examined on how accurately it generates meanings for words existing in one or both languages and for words with different orthographic characteristics. Next, patterns of priming within and between languages are examined. The results show that the model demonstrates both evidence of independence and also the key evidence of between language similarity effects. These results suggest that the BSN model may account for much of the data on bilingual lexical processing, without the need to postulate the structural modifications to the monolingual framework proposed by the BIN model.

In Chapter 8, we pursue a prediction of the BSN model that is at odds with the empirical data. This prediction is that non-cognate homographs will not show a between language priming effect. However, Gerard and Scarborough (1989) have reported just such an effect. We attempt to replicate this result in a priming study using English-French bilinguals. The subjects perform a ‘language exclusive’ lexical decision task. In this task, they are presented with a string of letters and must respond ‘Yes’ only if the stimulus is a word in the currently active language. The currently active language changes every 50 trials. Items are repeated within or between languages, and the patterns of priming examined. The results of this study support the BSN model: there is within language priming for non-cognate homographs, but no between language priming. We offer reasons why Gerard and Scarborough may have found the results that they did.

The BIN model can straightforwardly explain independence effects - it does so by postulating independent networks. But how does it account for similarity effects? One explanation is that they result from the way activity from each lexicon is co-ordinated. Bilinguals can generate responses from just one lexicon (as in language exclusive lexical decision task used above). Similarity effects must therefore arise because they cannot silence activity coming from the context-irrelevant lexicon. In the BIN model, similarity effects are thus explained by the way bilinguals control their lexical representations. In Chapters 9 and 10, we evaluate this idea. In Chapter 9, we review what is known about control mechanisms acting over mental representations, and then specifically about the control of bilinguals’ lexical representations. Much of the evidence comes from language switching experiments. Subjects are required to switch between recognising or naming words in each of their languages. These studies typically show that subjects incur a time cost to switch between responding in each language. Yet in Stroop experiments, subjects appear unable to ignore irrelevant language information, suggesting that there is no input switch to toggle recognition processes between one language and the other. We formulate a hypothesis about what the switch cost represents, and then in Chapter 10, carry out two experiments exploring factors affecting the switch cost. In these experiments, English-French bilinguals switch between performing lexical decisions according to their English and French lexicons every other trial. In the first experiment, we explore the effect of lexical status on the switch cost - is switching slower if the word that appears exists in both languages? - answer, yes (though this is a non-significant trend). Is the cost sensitive to the word’s meaning? - answer, no. In the second experiment, we vary the orthographic characteristics of the stimulus, and find that this has a marked effect on switch costs, particularly when they are nonwords. Finally, we find that the switch cost depends on subjects’ relative skills in each language.

In the light of the results, it is concluded that between language similarity does influence control processes, at least as they are revealed by switching. This is taken as support for the BIN model. It is suggested that the switch cost does not reflect the operation of an input switch as such, but a cost of reconfiguring responses. This is an important finding, since evidence of language switch costs has influenced a number of bilingual models. Some ideas are offered about the nature of the reconfiguration process. Lastly, because it is unclear how control processes would operate in the BSN, it is concluded that, while the results support the BIN model, they cannot rule out the BSN. It too could experience reconfiguration costs as language context changes.

In Chapter 11, we evaluate the respective models. The simulations supported the BSN account of independence and similarity effects. The experiments supported the BIN view, but could not rule out the BSN model. We explore how this tension between single route and dual route accounts runs through other domains in psycholinguistics where distributed models have been used (e.g. in the past tense and naming models). Using lessons from those debates, we try to separate the BSN and BIN. On grounds of parsimony, we support the BSN model. But the model would seem to run up against the problem of catastrophic interference when explaining second language acquisition. We explore the nature of this problem, and offer possible solutions that would support the BSN. In doing so, we suggest that the BSN and BIN approaches may well converge if the appropriate learning algorithm and network architecture are used. That architecture would initially use homogeneous representations, but would then self-organise according to the demands of the task domain, in this case, into separate representations where languages were different, overlapping representations where they were similar. This is to speculate that the distinction between one and two route models is not a meaningful one, although much work remains to be done to ground this speculation.

With regard to our broader question, the edges of distributed representation are to be found where there is an absence of between task similarity effects. Such similarity effects are the hallmark of a single set of distributed representations performing two tasks. They can be found in consistency effects in word naming, consistency effects and overgeneralisation errors in past tense formation, and in the similarity effects that are found when bilinguals recognise or name words in each of their two languages.

Chapter 1.

Introduction.

This thesis investigates the application of distributed representations to modelling bilingual language processing, specifically bilingual lexical representation. It will take as read that models employing distributed representation are a useful way to explore cognition
. On the basis of the case study of bilingual lexical representation, the thesis then seeks to draw wider conclusions about the scope of distributed representations to model apparently independent processes, and the behavioural evidence that would be indicative of such an underlying structure.

Background.

In order to account for our cognitive abilities, cognitive psychology postulates that internal mental representations mediate between stimulus and response. While all representations may ultimately be mathematically equivalent
, in practice, a given type of representation will make certain cognitive operations easier and certain cognitive operations more difficult. By determining what cognitive tasks we find easy and what tasks we find hard during performance, we may attempt to determine the nature of our internal representations.

The standard computational theory of mind takes the Symbolic form of representation to be central. In a Symbolic system, rule-governed, syntactic transitions operate over symbols to change the representational state of the system. The individual symbols are attributed meaning so that systematic combinations of symbols may represent the world. Transitions operating over symbols become useful internal changes of state with reference to the world, for instance in generating responses or initiating future actions.

In the mid-eighties, an alternative form of representation emerged as a serious contender to the Symbolic approach. The Connectionist approach claims that distributed representation is fundamental to the cognitive system. Distributed  representation arose as a candidate from research into the type of representations developed by (usually artificial) neural network systems. These networks comprise potentially large numbers of simple, highly interconnected processing units working in parallel. They can model the performance of psychological functions, so long as their activation states are ascribed meaning. Moreover, such networks may be trained to perform psychological functions by altering the strength of the connections between the units, and so the type of activation states the network falls into during processing.

In Symbolic systems, individual symbols frequently have a direct reference to events or objects in the world. In Distributed systems however, the activation of whole collections of simple processing units may refer to a given object or event in the world. In that sense, the representation of the object/event is said to be distributed (or spread) over an area of the system
. That same part of the system may also be involved in instantiating the representations of many other objects/events when in different states of activation.

Both Symbolic and Distributed approaches support theories that reflect the characteristics of human cognitive processing. However, the characteristics they reflect are quite different. Operations that symbolic representations find easy permit us to formulate convincing accounts of language use and high level reasoning. Operations that distributed representations find easy allow us to account for pattern recognition, aspects of inductive learning, and the robust and error tolerant nature of cognition. Whether one or other form of representation will come to predominate in cognitive theories, and how the two forms of representation will ultimately relate, are questions yet to be resolved. Their resolution may wait upon a clarification of the relation of the neural substrate to the cognitive system which it instantiates .

Finding the edges of distributed representation.

In this project, we will consider how to delimit the notion of distributed representation. Is the whole cognitive system distributed? If not, into how many internally distributed pieces should we break up the system?

In a distributed system, the same collection of simple processing units can represent many different things. So to take an example, a network might represent all the possible ways of taking an English verb and forming its past tense. Give the network the verb stem, and it will output the past tense of that verb. The units inside the network do not individually represent each past tense (such as TALK goes to TALKED, FIRE goes to FIRED, and so on); instead the whole network represents all the past tenses. Indeed on the basis of this combined knowledge base, the network can ‘guess’ at past tenses for verbs it has not seen. In constructing such a network, note that we assume that there is a delineated, cognitive “box” for forming the past tenses of verbs. Now say that we take another related task, perhaps forming the plural of nouns. This will constitute another set of knowledge. Following the distributed approach, should we expect all the knowledge for forming plurals and all the knowledge for forming past tenses to be represented over the same (large) set of units, in the same network? Or would there be a box for forming past tenses, and a box for forming plurals, with separate distributed representations filling each?

Let us backtrack a little, so that we can state this point in more general terms. Theories of the cognitive system tend to start by decomposing the system into a set of independent, functional modules. This decomposition is based on broad neuroanatomical and cognitive neuropsychological grounds. We might ask questions such as these: As much as we can localise functions in the brain, which functions seem to reside in parts a long way away from each other? Quite separately, we might enquire about functional localisation: When parts of the system stop working, which functions seem to be able to carry on independently of other functions? The decomposition of the system can continue further than this, although in a less constrained fashion. We might now ask, which sort of functions ought to be carried out separately? The outcome of this process is a cognitive system broken down into a number, perhaps a very large number, of modules (or cognitive “boxes”). Each of these will perform their function using their own representational resources and communicate the outcome of their processing to other modules in the system (perhaps serially, perhaps in parallel, perhaps interactively).

The issue for the Distributed approach is this: Should we see distributed representations as existing only inside the boxes, or can distributed representations spread out to cover the supposed functions of more than one box? Can a single network with distributed representations account for what we had presumed should fall into separate boxes? Or should our concept of distributedness be limited to representations spreading out over simple processing units, only within the confines of a predetermined box?

We should not expect this question to have an all-or-none answer. Perhaps some clusters of functions are performed by a single distributed network, and others by separate networks in accord with a modular structure. What we need to establish is the sort of evidence that we should look for in determining if a set of functions falls inside a single network or in separate boxes. In short, what are the limits of distributedness?

Cognitive neuropsychology offers a test for any theory. It sets out some key empirical evidence that must be accounted for: Let us say that in the breakdown of the cognitive system, two functions can be damaged independently. If we were to posit that these two functions fell within the distributed representations of a single network, then we would have to show how damage to this system could result in the dissociation of these functions when they were represented over the same set of processing units. This question, however, will not be the concern of the current project. (Suffice to say, such dissociations of function are at least theoretically possible within a single network, and current research is exploring the conditions under which they might occur
.)

In this project, we will be interested in how we might proceed when our two functions exist in an intact cognitive system. What characteristics should we look for when seeking to establish whether we are looking at the work of one or more distributed systems in the performance of some behaviour? This issue will be addressed by focusing on a single case study, that of bilingual lexical processing. 

The Case of Bilingual Lexical Processing.

Theories of lexical processing deal with how humans recognise words and retrieve information about those words, so that they may construct the meaning of the sentences in which the words occur. That information includes their meaning, but also their pronunciation, spelling, syntactic role, and associations. Cognitive neuropsychology offers us some clues as to how this system can be deconstructed into boxes. Patients with certain forms of brain damage are able to distinguish words from made-up letter strings and to name these words, without being able to understand what the words mean
. It appears that the recognition of a word form may fall into a separate box from full comprehension of the word’s meaning. Accounts of lexical processing generally seek to explain how the word form may be recognised and then how this might be used to access the word’s meaning.

In monolinguals, the starting point is a set of empirical data that describes how people generally behave when recognising words: which words they find easy to recognise, which they find hard, the ways in which their recognition systems are vulnerable to manipulation, and so on. Different theories seeking to account for these data start by choosing an underlying form of representation. The chosen form of underlying representation then critically determines the way the pieces of evidence are explained in terms of a model of word recognition.

We will refer to the place where word information is stored ready for retrieval upon the right visual/auditory input, as the lexicon. Three different approaches have been taken to explaining how the lexicon works, based on assuming different forms of underlying representation. These forms are as follows. The first is the assumption that the lexicon is no more than a dictionary. It comprises a long list of words, and recognition involves looking up a given input in the dictionary. The second assumption is that words themselves are like units in a network. The units serve as detectors for each word. Recognition amounts to using the evidence of the input to activate the correct unit in the network. Each word in the lexicon will have a separate unit to detect it. While network based, this idea is not the same as the third assumption, that of distributed representation. In the distributed approach, the representation of an item is spread over a number of units, not one. In the distributed account, a network of processing units is used to derive the relevant word information, given the input.

In this project, we will examine whether the distributed account of lexical representation can be extended to account for the bilingual case. In the bilingual case, there are two languages, two sets of words to be recognised. The first two underlying forms of representation (dictionary and word units) have already been extended to construct models of bilingual lexical representation. These models assume that the two languages are stored separately. No account of bilingual lexical processing based on distributed representations has yet been formulated. In this project, we will examine whether a single set of distributed representations can store the information necessary for the recognition of the words in two languages; that is, whether it can perform the function of two lexicons.

As in the monolingual case, the starting point will be a set of empirical data about the ways bilinguals behave when recognising words in their two languages. It is these data that any plausible model needs to account for. The majority of the evidence is based around visual word recognition. While offering the most pragmatic experimental paradigm, in some senses this emphasis is regrettable, given that the comprehension of spoken language is the more primary form of lexical processing. Nevertheless, the aim will initially be to evaluate how well a distributed bilingual model accounts for the empirical data on the processing of written word forms in two languages. Where possible this will then be related to the processing of spoken language.

The Structure of the Project.

The structure of the project is as follows:

· In Chapter 2, monolingual evidence on word recognition is reviewed. We examine the models put forward to explain the functioning of the lexicon. These are based on various forms of underlying representation (word lists, word detectors, distributed networks).

· In the first part of Chapter 3, bilingual evidence on word recognition is reviewed. We take a brief look at neuropsychological evidence, then a more in- depth look at the psycholinguistic evidence, and finally we examine developmental evidence. From this review, we draw a functional picture of the bilingual word recognition system, in which there are separate representations of the lexical knowledge in each language, but a common semantic store.  In the second part of Chapter 3, we look at existing models of bilingual word recognition. These are extensions to monolingual models, including those based on word lists and on word detectors. However, there is no distributed account.

· In Chapter 4, we begin to investigate what a distributed model of the bilingual lexical system would look like. Must it be any different from the monolingual system? If so, would both languages be represented in a single network? Or would separate networks be required for each language? These questions translate into three hypothetical models: the No Change (NC) model, the Bilingual Single Network (BSN) model, and the Bilingual Independent Networks (BIN) model. The NC model is discarded due to an inability to account for some basic empirical evidence. The rest of the thesis then consists of an evaluation of the respective claims of the BSN and BIN models. We begin this endeavour by considering whether developmental constraints will favour one or other model. It turns out that both models have problems in dealing with developmental evidence, the BIN model in accounting for the simultaneous acquisition of two languages, the BSN model in accounting for second language acquisition. Next we introduce a simple computational model which looks at the implications of putting two sets of knowledge in a single network. The results suggest interference between the two sets when individual mappings are similar. Inspection of the empirical evidence reveals just such interference effects with bilinguals, offering initial support for the BSN model.

· In Chapters 5 to 8,  we look at the BSN model in more detail. The model is explored by constructing a computer simulation, and comparing the performance of the simulation against the empirical evidence reviewed in Chapter 3. Much of this data revolves around priming effects. In Chapters 5 and 6, we firstly show that the distributed word recognition framework can coherently deal with priming effects, something not so far achieved. In Chapter 7, we build and test the computational model. In Chapter 8 we empirically test and find support for two predictions of this model.

· In Chapters 9 and 10, we consider the BIN model. The BIN model has difficulty in explaining interference effects between the languages if they are to be represented in separate networks. One explanation is that interference effects are produced in the way the activity of the separate networks is co-ordinated. In Chapter 9 we look at evidence concerning the control of mental representations in general, and of the bilingual’s lexical representations specifically. In Chapter 10, we introduce two empirical studies which investigate the way bilinguals control access to their lexical knowledge. We find support for the BIN model but cannot rule out the BSN model.

· In Chapter 11, we compare the respective models. Both can account for elements of the empirical data presented in Chapter 3. The relation of the single network and independent networks accounts is discussed in the context of single and dual route models of cognitive processes. Criteria are introduced to distinguish between them and thus delimit the edges of distributed representations. We side with the BSN model on grounds of parsimony. We show how the BSN model might overcome its difficulty with second language acquisition. In doing so, we speculate that the BSN and BIN models might eventually be reconciled, by a learning algorithm that combines self-organisation with pattern association.

Chapter 2.

Monolingual lexical processing.

Introduction.

In this chapter, we will introduce the basic empirical evidence concerning lexical processing in monolinguals. We will then review the main models of visual word recognition put forward to account for these data. These models will form the basis of those put forward to account for bilingual lexical processing. The underlying forms of representation used in the monolingual models will have implications when they are extended to the bilingual case. For that reason, we will introduce them here.

The task of word recognition is one of finding which word stored in one’s internal dictionary corresponds to the perceptual input to the language comprehension system. Once the appropriate word has been found, information about that word becomes available (e.g. its meaning, pronunciation, syntactic role, associations, and so on). The word can then be used in combination with others to derive the meaning of a sentence, and this meaning can be integrated into an understanding of the on-going discourse. Current theories differ as to how the appropriate word representation is found, given the perceptual input. The method of access varies according to the assumption each theory makes concerning the nature of the underlying representations in the reading system.

· Serial Access models assume that words are stored in lists. For this model, the way in which the lists are searched must lead to the pattern of empirical effects.

· Direct access models assume that each word has a detector (or ‘unit’), which becomes activated if it detects evidence in the perceptual input suggesting it is the correct word. The way in which the correct word unit becomes active must lead to the pattern of empirical effects.

· There is a hybrid form of model, which combines Direct Access and Serial Access approaches. These are called Verification models. Here the most activated word units from the Direct Access part of the model form a list to be searched in Serial order. The combination of activation and searching must produce the correct pattern of performance.

· In Distributed models, the perceptual input must produce the correct word information as various outputs from a distributed network. The nature of the mappings between the input and the various outputs must accord with the empirical evidence.

The empirical data to be accounted for.

The models are assessed in how they can account for the empirical evidence, which is derived from naming tasks and more predominantly, the lexical decision task. The lexical decision task was introduced by Rubenstein and colleagues (Rubenstein, Garfield, and Millikan, 1970; Rubenstein, Lewis, and Rubenstein, 1971; Rubenstein, Lewis, and Rubenstein, 1971).  In the lexical decision task, subjects are required to discriminate words from combinations of letters that do not form words, by pressing one button if the presented stimulus is a word, and another button if it is not. The speed of the response, and the accuracy of decisions are used to measure the difficulty of lexical processing. If a letter string doesn’t violate rules of spelling (see later), the task can only be achieved by checking out whether a word representation exists for that letter string in the lexicon.

Some questions have been raised over the appropriateness of the lexical decision task for investigating lexical representation. For instance Balota and Chumbley (1984, 1985) have suggested that results from the task do not reflect lexical access but the process by which the subject makes the yes/no decision after having accessed the lexicon. However in a recent review, Taft (1991) concluded while “consideration must always be given to the possibility that any effect obtained in this task could have arisen at this task-specific stage of processing”, that “there is little support for the claim that the lexical decision task is a poor measure of lexical access.” (p. 31-32). We will return to this issue in later chapters.

The main empirical findings derived from the lexical decision task are as follows. The frequency effect: frequent words are responded to more quickly and accurately than rare words (e.g. Rubenstein et al, 1970). The lexical status effect: it takes subjects a longer time to reject nonwords that are similar to words than it does to accept words. The nonword legality effect: responses to nonwords that are orthographically legal (e.g. SARE) are longer than those to highly disordered letter strings (e.g. RSAE) (e.g. Rubenstein et al, 1970). The word similarity effect: when a legal nonword is sufficiently similar to a word, it is difficult to classify as a nonword. For instance, TRIAN (the word TRAIN with two letters transposed), is rejected more slowly and inaccurately than the nonword TRUAN (Chambers, 1979). Coltheart, Davelaar, Johasson, and Besner (1977) demonstrated what they referred to as a “neighbourhood size effect” whereby the greater the number of words that a nonword was one letter different from, the longer the response time. The repetition priming effect: when a word is presented for a second time, response latencies to the second presentation are reduced (e.g. Kirsner and Smith, 1974; Scarborough, Cortese, and Scarborough, 1977). This effect will be central to much of this project, and will be explored in more detail in Chapter 5. The semantic priming effect: when a word is preceded by a semantically related word, it becomes easier to classify as a word (e.g. Meyer and Schvaneveldt, 1971).

Serial Access Models.

The main serial access model is the Search Model (Forster, 1976, 1979). In this model, all the words are thought of as being stored in the cognitive system in the form of a long list. Each word in the list is checked against the perceptual information until a match is found. Since it would be cumbersome to go through the entire list for each word access, the words are thought of as being sorted into “bins”, based on superficial sensory characteristics (for example, a bin for all words beginning with “s” and ending with “e”). The appropriate bin is selected prior to the search procedure. There is one set of representations for orthographic information (written words) and another for phonological information (spoken words). These form what is called the access file, and feed into the modality free “lexicon proper”. This is called the master file and contains the full information about each word. When a word is accessed, there is a final checking stage to ensure the chosen word actually matches the sensory input.

The search model accounts for the frequency effect by postulating that within each bin, words are ordered by frequency. High frequency words are checked first, and the number of checks is proportional to the response time. Nonwords take longer to respond to because the relevant bin must be searched till its end before responding, while the search for a word terminates when a match is found. Illegal strings fail to match any lexical entries, whereas legal strings do provide sufficient lexical matches for at least some lexical representations to enter the checking stage. TRIAN is sufficiently similar to the lexical entry TRAIN for the latter to be accessed, and the mismatch is only picked up at the post-access checking phase. With repetition priming, two possibilities are suggested: either a word is seen as being moved to the head of a search set after it has been accessed, or a lexical entry, once opened, remains open for a short period of time, facilitating the next access. The presence of cross references between semantically related words in the master file accounts for semantic priming: related words become available and are put in a short peripheral access file, which is searched in parallel with the regular bins on the next trial.

While the Serial account is a coherent one, the use of lists as a basic form of representation often gives the model a laboured feel. The account is very firmly seated in the symbolic computational metaphor, resembling an implementation of a word recognition system rather than explanation. We now turn to Direct Access models.

Direct Access Models.

There are two main direct access models. The first is the Logogen Model (Morton, 1969, 1979) and the second is the Interactive Activation Model (Rumelhart and McClelland, 1981). In the Logogen model, each discrete word representation is seen as an evidence collecting device, or “logogen”. This word unit becomes more “activated” the more features of the incoming stimulus resemble those of the word that the unit represents. When the activation reaches a certain threshold, the unit fires and the word is recognised. Morton suggested separate orthographic and phonological sets of logogens, and in place of a master file, added a central “cognitive system”.

The model accounts for frequency effects by suggesting that logogens for high frequency words have lower activation thresholds (or higher base rate activations). Since lower frequency words are less likely, their logogens require more sensory information to fire. In this model, one might ask how the system knows when to give a negative response in the lexical decision task, because unlike a search through a bin, there is no obvious end to the logogens’ process of collecting evidence. Coltheart et al (1977) suggest that the system sets a deadline, after which if no logogen has fired, a ‘No’ response is given. This deadline is modified depending on the total activation in the system, so is short for illegal nonwords, and long for nonwords that are very similar to words. This makes sense because if there is a lot of activity in the system, from a signal detection point of view, it is quite likely that the input is a word. Repetition priming is accounted for by proposing that after a logogen has been accessed, its activation level takes time to return towards its resting level. Re-access before it settles is facilitated. Semantic priming is accounted for by proposing that semantic features contribute to the activation of the logogens, and that the logogen system is fed with features extracted from the semantic context generated by previous words.

The Interactive Activation Model is an elaboration on the logogen approach. It is based on the computational simulations of a model of letter perception carried out by Rumelhart and McClelland (1981, 1982). It comprises processing units in sets that correspond to higher and higher levels of language abstraction. The lowest set is of visual letter features, then there are letter units and at the top, word units. Visual input activates the letter feature detector units, which in turn activate the letters with which they are consistent, which then in turn activate word units. In this way, activation feeds up from the bottom of the model to the top. However, it also feeds from the top downwards, so that words reinforce the activation of the letters that comprise them, and letters reinforce the features that comprise them. Lastly, units at a given level inhibit other units at the same level which form inconsistent interpretations of the input. At each level units compete to be the winners. Thus the model settles into a state whereby a single letter is recognised in each letter position, and a single word emerges as the most active. Only one set of word units is proposed for both orthographic and phonological modalities.

The Interactive Activation (IA) model accounts for the frequency effect by allowing high frequency words to have a higher “base rate” activation level. A similar deadline strategy to that of the Logogen model is proposed for producing responses in the lexical decision task. The more activation there is in the system, the longer the deadline. This accounts for the lexical status and nonword legality effects.  For the IA model to account for the word similarity effect, TRIAN must activate TRAIN more than TRUAN does. However the model as originally instantiated in a computer simulation, employed position specific letter detectors. An ‘I’ in position 3 should not activate a letter unit for an ‘I’ in position 4, and nor indeed should a ‘U’. Thus it is hard to see how either TRIAN or TRUAN should activate TRAIN very much. One answer is to propose that position specificity is blurred. Thus a letter detector for an ‘I’ at position 4 might be half activated by the features of an ‘I’ in positions 3 and 5, and a quarter activated by the features of an ‘I’ at positions 1 and 6, and so on. Such receptive fields for letter detection would account for why human subjects are significantly more delayed by letter transpositions such as TRIAN than they are by letter substitutions such as TRAIM (Chambers, 1979). However this suggestion has yet to be tested in an implemented IA model.

Repetition priming is accounted for by suggesting that the resting activation of a word unit is raised when it is accessed, and slowly returns to its resting level. Lastly, the model explains semantic priming in terms of feedback from semantic level units to word level units (McClelland, 1987), in the same way as the logogen model. However, there is a problem for the IA model with this approach, which will become relevant when we later consider a bilingual version of the IA.

Consider the situation where DOG is followed in a lexical decision task by CAT. Semantic priming tells us that the response to CAT should be faster. DOG sends activation to, say, the “domestic animal” category, which in turn sends activation to the CAT word unit, so priming it for the next trial. However, the design of the model means that in terms of activation, the DOG word unit must compete with the CAT word unit. Since at this stage the visual input is consistent with DOG while CAT only has semantic input, the DOG unit will win out over the CAT unit and so lower the activation of the CAT word unit. This predicts inhibition rather than facilitation. In terms of the IA model, this contrary result suggests that the word level may not be the locus of the semantic priming effect. Indeed Taft (1991) suggests that the priming effect may arise primarily at the post-access stage of lexical processing.

Verification Models.

There is a third type of model that mixes aspects of both serial and direct access models. These are called Verification Models. In these models, the initial aim of the system is to generate a set of approximate candidates from the sensory input. There is then a further verification stage to judge which of the candidate set actually matches the input. The set of candidates is checked sequentially against the sensory input representation (stored in short term memory) until a match is found. The initial candidate set may either be generated by a serial search method (Becker, 1976), or it may be generated by an activation method. That is, the system would form the candidate set by taking a certain number of the most activate word logogens from a direct access architecture. This second approach is called the Activation Verification Model (Paap, Newsome, McDonald, and Schvaneveldt, 1982). Verification models account for the empirical effects by selecting elements of the serial access and direct access approaches.

Absent accounts of acquisition.

We should note at this stage that none of these models is intended to offer a plausible account of how the language comprehension system, and specifically the lexical representations, might develop. In all cases, the system is static, and the questions that are addressed are those of how the system functions in its final developed form. There is no account of how lists of words or networks of word units might have found their correct locations and frequency settings in the system.

One could construct ways in which these models might develop their libraries of words. For example, in the case of Search Models, we could propose that when a new word is learned, a new entry is placed in the appropriate bin in the access file, at some default position in the frequency order. We would place an entry in the master file and establish the appropriate semantic connections. Over time, we would deduce the word’s frequency, and so move it to the ‘correct’ position in the access file. In Direct Access models, we might explain development as a process of adding extra word nodes, wiring them to their appropriate sources of confirmatory evidence, and then setting their base rates or thresholds according to their perceived frequency over time.

However, in the absence of a good evolutionary justification, task specific learning algorithms of this sort have a low psychological validity. In evolutionary terms, at least, visual word recognition is a recent human skill. We would thus expect mechanisms of acquisition either to be domain general (i.e. be equally applicable to the development of a range of cognitive tasks) or to have been commandeered from some other pre-existing specialised learning algorithm. Developmental theories that start with the premise that the cognitive system is expecting to form alphabetical lists to categorise the world may be taking too much for granted. It is not clear that word units or word lists as representational formats will readily lend themselves to developmental accounts.

Distributed models of word recognition.

In this section we will focus on Seidenberg and McClelland’s (1989) “Distributed developmental model of word recognition and naming” and subsequent modifications to their framework. In this model, the lexical representations are learnt. The behaviour of the model is a consequence of the interaction of its general learning mechanisms and the nature of the word recognition task. We will consider this model in some detail, as it will provide the framework for the bilingual model of lexical processing introduced in Chapter 7. We will consider the following areas:

1. Original aims of the model.

2. How does the model work?

3. How does the model perform lexical decisions?

4. Acquisition of the word recognition system.

1. Original aims of the model.

The distributed model of word recognition was introduced by Seidenberg and McClelland in 1989, as part of a wider theoretical framework seeking to detail some of the psychological processes that underlie reading. The preceding approaches to word recognition have posited a localist representation for each word stored in the lexicon, be they in lists or in a network. Stored along with each word is its pronunciation. The task of recognition and naming thus involves accessing the correct ‘word unit’. Seidenberg and McClelland proposed a radically different approach, whereby word recognition is seen as a question of computing codes, specifically orthographic (letter), phonological (sound), and semantic (meaning) codes. Mapping between codes is achieved using distributed representations developed over connectionist networks during exposure to a corpus of words. In short, Seidenberg and McClelland denied that there is a need for word unit representations at all.

In some respects, the Seidenberg and McClelland model can be seen as an progression of the Interactive Activation model, in the sense that statistics of word frequency (and the frequencies of letter associations within those words) are captured within the structure of both models. But while the IA model required the help of the modellers to build in this information, in the distributed model, its presence is due to the nature of the task itself. The combined influence of all the mappings required of the network acts on a shared set of connection weights, and  imprints the structure onto the network.

Seidenberg and McClelland constructed their model with two main aims in mind. Firstly, they wished to generate a model that could learn to pronounce regular words (e.g. HINT, TINT, MINT), exception words (e.g. PINT), and novel letter strings (e.g. QUINT), using the same distributed network. Traditional accounts of naming (e.g. Coltheart, Curtis, Atkins, and Haller, 1993) have maintained that regular and novel pronunciations are performed by a separate functional system from the one which generates pronunciations for exception words. In performing these tasks, the distributed model would also have to show the interaction between word frequency, word regularity, and letter-to-sound consistency which is reflected in people’s word naming times. Secondly, the model was intended to show how the ability of subjects to make lexical decisions could be explained without recourse to localised representation of words, or it turns out, initially even without recourse to meaning. This was a bold step given that the principal distinction between words and letter strings is that only the former possess meanings.

2. How does the model work?

Seidenberg and McClelland proposed an interactive framework for the reading system, shown in Figure 2.1. The model recognises words as follows. The perceptual system is assumed to pre-process the input, and provide an orthographic coding of the stimulus to the network. From this, semantic and phonological codes are computed via banks of hidden units. The orthographic information is then reproduced on the input units. This reproduction process allows the model to test the familiarity of the letter string. Only two parts of this framework were initially implemented as working simulations. These were the mapping between orthography and phonology (to simulate naming) and the reproduction of orthography (to simulate lexical decision).

The model comprised a standard three layer feedforward network, trained with the backpropagation learning algorithm (Rumelhart, Hinton, and Williams, 1986). It was trained to map orthographic codes to phonological codes for a corpus of approximately 3000 monosyllabic words
. The orthographic codes were also trained to reproduce themselves, a task known as autoassociation. Seidenberg and McClelland used a coarse coding scheme to represent written words and pronunciations, taken from Rumelhart and McClelland's model of English Past Tense Formation (1986). This coding scheme decomposed each word into several unique ‘jigsaw’ pieces, each of which represented a single letter or phoneme plus a small amount of its surrounding context. After training, the network could produce pronunciations for all but 77 (2.7%) of the words. The model had learned to pronounce both regular and exception words.

Figure 2.1: Seidenberg and McClelland’s (1989) framework for a distributed model of reading.
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When the orthography-to-phonology network was tested on its ability to name different types of words, which varied according to their frequency, regularity, and consistency, the accuracy with which it did so showed a surprisingly close fit with the human reaction time data. In these models, the accuracy of output (in terms of the ‘error score’) is taken as monotonically related to reaction time, on the basis that a less accurate output would take longer to produce a response (later investigations have suggested that this relationship is actually only an approximate one; see Bullinaria, 1995a).

The model simulates this naming data by virtue of the fact that frequency, regularity, and consistency are all mediated by a common mechanism, that of changes to the network’s weights. Regular and consistent mappings encourage changes in the weight matrix that will be mutually beneficial: similar pronunciations for similar words will serve to mutually reinforce these types of mappings; conversely, if similar looking words have dissimilar or inconsistent pronunciations, this will damage the usual mappings between graphemes and phonemes. The size of the weight change for a given word is proportional to its frequency: high frequency words impress their mappings more strongly on the weight matrix. Interactions between frequency and regularity / consistency occur because there are ceiling effects in the non-linear processing units in the network.  These cause the differences between regular / irregular, and those between consistent / inconsistent words to be flattened out at high frequencies (see Appendix E). Finally, low frequency exception words will be the poorest learnt (many of the 77 unlearnt words were of this type) because infrequent training on these words results in little weight change, and no help is available from similar words to aid their learning. We will later encounter the effects of frequency and consistency in the distributed bilingual model.

The original model produced by Seidenberg and McClelland had a major flaw (Besner, Twilley, McCann, and Seergobin, 1990; Coltheart et al, 1993). From information learned about words, the network was not able to generalise adequately to novel strings. It could not generate pronunciations at anything like the level at which humans could perform on such strings (approximately 60% instead of 90%). Indeed, the jigsaw coding made it hard to work out what pronunciation a given network output corresponded to, because the output didn’t always produce a set of pieces that could be put together to produce a pronunciation. However it was apparent that the network had not managed to develop a way of pronouncing novel letter strings within the same distributed representations used to name words.

Plaut and McClelland (1993) and Plaut, McClelland, Seidenberg, and Patterson (1996) carried out subsequent work to address this weakness. They sought to refine the implemented model, whilst preserving the theoretical framework. These researchers suggested that the original jigsaw representational scheme was insufficient to show the model enough of the similarities between words and their pronunciations to allow the network to develop general naming skills. Using a new coding scheme which incorporated more orthographic and phonological constraints about English, subsequent networks were able to learn to pronounce all the words in the corpus and to pronounce non-words as well as humans. The interactions between frequency, regularity, and consistency were preserved.

3. How does the model perform lexical decisions?

Seidenberg and McClelland suggested that one way to perform lexical decisions is on the basis of orthographic familiarity. In the model, the network is trained to reproduce orthographic information. The accuracy with which it subsequently reproduces a given orthographic input can be taken as a measure of how familiar this string is to the network. This is because the network should only be good at reproducing letter strings it has been trained on - namely words. If an appropriate accuracy threshold is set, this measure can be used to distinguish (unfamiliar) letter strings from (familiar) words. Let us now see how this model generates accounts for the main empirical effects in lexical decision.

Frequency effect.

The frequency effect is accounted for by virtue of the fact that high frequency words are presented to the network more often, causing greater weight changes across the network and thus more accurate reproduction.

Nonword legality effect.

The account of performance on nonwords is a little more complicated, and depends on the nature of the nonwords. Performance is assumed to operate by a combination of information sources, with the combination altering depending on the nature of the input. If the nonwords are orthographically illegal (e.g. QRGLKJ), they will produce high error scores when the network attempts to reproduce their orthographic information. Words on the other hand will produce low error scores. A criterion can be set so that error scores below the criterion are accepted as words, and those above the criterion are rejected as nonwords. Response times will be determined by how far the actual error score is from the criterion: the closer the error score to the criterion, the more difficult the decision, and the longer the response time will be.

However, nonwords which are similar to real words (otherwise known as pseudowords; e.g. SARE) may also produce low error scores, which would cause erroneous responses. If the subject perceives that there are pseudowords in the stimulus set, Seidenberg and McClelland propose that subjects will adopt a strategy of accessing phonological information. That is, a phonological coding will be formed from the input string, and its familiarity will be tested in a similar way to the orthographic coding. If reproduction of the phonological code gives a low error score (below some threshold), then this suggests that the system has a familiar pronunciation stored for the letter string, and that it is a real word. Since consulting phonological information takes time, responses to word-like nonwords will be longer. The more similar nonwords are to real words, the longer the response time will be.

Pseudohomophone effect.

What if a nonword not only seems like a familiar letter string, but also generates a familiar pronunciation? Nonwords which sound like real words, such as BRANE, are known as pseudohomophones. In this case, the only way for the distributed system to determine whether this is a word, will be to finally consult semantics to find out if a meaning exists for this orthographic string. Accessing semantics will again take longer.

The familiarity criterion approach to lexical decision has been criticised by a number of researchers. It appears to be true that subjects alter their strategies in the lexical decision task depending on the stimuli (Waters and Seidenberg, 1985). However, Besner, Twilley, McCann, and Seergobin (1990) have questioned whether such a familiarity criterion approach can really work. This is because it seems reasonable to suppose that a very word-like nonword (e.g. SARE) will always be able to produce an error score that is lower than that for a very low frequency irregular word (e.g. YACHT). This may be true for both orthographic and phonological measures of familiarity. A lexical decision in this situation can only be made on the basis that the rare word possesses a meaning, whereas the familiar seeming nonword does not.

Besner et al have further suggested that in the model, a very word-like nonword might produce a plausible meaning in the same way as it produces a plausible pronunciation. This would deny the system this ‘last resort’ upon which to make its decision. However, Plaut, McClelland, Seidenberg, and Patterson (1996) have argued that semantic representations are likely to employ a sparse representational format, whereby inputs must be very close to known word forms to stand a chance of generating a meaning. So long as words alone produce semantic codings in their model, lexical decisions will always be possible in this route. In the context of the current project, the sparseness assumption will become relevant when we examine the model’s ability to simulate word priming. In Chapter 6, connectionist simulations will be presented to test the assumption that the use of sparse coding prevents pseudowords from generating spurious meanings.

Word similarity effect.

We have seen that word-like nonwords can produce low error scores which makes them hard to differentiate from words. However, to account for the fact that TRIAN is more difficult to reject than TRAIM, we would need to postulate the same sort of probabilistic positional coding that was suggested for the IA model.

Repetition priming.

No account is offered for repetition priming in the model. Seidenberg and McClelland do produce an account of the short term priming of pronunciations in the orthography to phonology network. This is achieved by giving the network extra training on certain mappings. Presumably, we could extend this account to repetition priming effects in lexical decision. However, there are a number of serious problems which arise in doing so. These will be considered in some depth in Chapter 5.

Semantic priming.

The model as implemented by Seidenberg and McClelland has no way for semantic information to influence lexical processing, so there is no way for the implementation to model semantic priming in the lexical decision task. However such feedback is implied in the wider framework. Moreover, Plaut (1995a) has shown that a model which implements the mapping between orthography and semantics and which employs the appropriate feedback, can indeed model both semantic and associative priming.

Conclusion.

In sum, the distributed model of lexical representation offers an elegant account of word frequency effects and a complex story on lexical status effects. It handles nonword legality and word similarity as robustly as other models. The position on repetition priming is unclear, but will be considered later. Finally the model appears to be able to handle semantic priming quite straightforwardly.

4. Acquisition of the word recognition system.

One of the major strengths of the distributed approach to modelling the reading system is that it offers the potential to provide an account of the acquisition of internal representations; an account which embodies the sort of general learning mechanisms one might expect would be applied to a recently acquired cognitive skill like reading (McClelland, 1993). General learning mechanisms and general processing structures are used to map between representations developed in a given domain. It remains for a full developmental account to fill out explanations of how these domain specific representations are acquired in word recognition and naming. Once they have been constructed, learning algorithms are assumed to adjust the network so that it performs the desired mappings between the representations.

While no concrete account of the development of these representations has yet been given, one can imagine its basic form. Children are seen as developing sensitivities to regularities in the structure of the environments in which they are immersed. Within the Connectionist approach, there are learning algorithms which can form their own categorisation of data sets according to the latent structure in those data sets (e.g. Kohonen, 1982). One could imagine such learning mechanisms developing the representations for the reading system according to the regularities of the current language. This would predict that different linguistic environments would produce language users with differing sensitivity to linguistic structure. And indeed this is the sort of evidence that has been found.

To take an example, Ben-Dror, Frost, and Bentin (1995) recently carried out an experiment comparing Hebrew and English monolinguals. In Hebrew, an orthographic consonant is often pronounced as a consonant followed by a vowel. Thus

Corthographic  (   CVphonological 

In English the vowel is specified in the orthography:

CVorthographic  (   CVphonological
Ben-Dror et al played subjects CVC sounds and asked them to delete the first “sound” of each word (e.g. DOG ( OG). Hebrew speakers, unused to detaching the initial consonant from the vowel in such words, were slower to delete the initial phoneme, and faster in deleting the initial syllable, than native English speakers. As expected, the language experience of these subjects had led them to develop different sensitivities to language structure.

Conclusion.

In this chapter, we have seen several different models of lexical representation. We have seen how they differed according to their basic form of representation, and also according to how well they might fit into an account of the acquisition of reading skills. In the next chapter, we will move on to the central empirical evidence bearing on bilingual lexical representation. Once more we will see a Serial Access account, a Direct Access account, and a Hybrid account, but no Distributed account. The development of a Distributed account will form the subject matter of Chapters 4 to 7.

Chapter 3.

Bilingual Lexical Processing.

Part One: Empirical Evidence.

 “How is it that the bilingual is able to ‘gate out’ or, in some fashion, set aside a whole integrated linguistic system while functioning in a second one, and a moment later, if the situation calls for it, switch the process, activating the previously inactive system and setting aside the previously active one?” (Lambert, 1969, p. 99).

Introduction.

Much of the research on bilingual language representation has sought to answer the following question: When required to recognise a word in either language, does the bilingual have (metaphorically speaking) two separate dictionaries to flip through to find the word (one for each language), or do they have a single, thick book containing the words in both languages?

As the quote from Lambert (1969) suggests, at times bilinguals appear to demonstrate an ability to behave like monolinguals in each language. Indeed, anecdotally, bilinguals occasionally report that when comprehending words in one language, if they unexpectedly come across a word from the other language, they initially fail to recognise it (Scarborough, Gerard, and Cortese, 1984, p. 90). On the other hand, if bilinguals are asked specifically to ignore words from one of their languages, such as in a bilingual version of the Stroop task (e.g. Preston and Lambert, 1969), they seem unable to avoid semantically processing words in the task-irrelevant language. Perhaps when bilinguals initially fail to “recognise” words which unexpectedly appear in a different language, this is no more than the ‘double take’ monolingual readers experience if the next word in a sentence is out of context. Then again, when bilinguals are specifically required to switch between recognising words in each language, they take a measurable amount of time to switch from one language to the other (Grainger and Beauvillain, 1987). Are subjects putting down one dictionary and picking up the other? Any account of bilingual word recognition must address these apparently contradictory stories.

This part of Chapter 3 will review the empirical evidence which has been gathered to address the nature of the bilingual’s lexical representations, and how bilinguals can exert control over these representations. It will comprise three sections.

1. The first section considers neuropsychological evidence. Can bilinguals with brain damage selectively lose comprehension or production skills in one of the languages independently of the other? Is there evidence for separate anatomical representation of the bilingual’s two languages?

2. The second section considers the psycholinguistic evidence marshalled to investigate bilingual word recognition. In this section, we will introduce the basic methodology, review the major studies, and generate a basic picture of the structure of the bilingual word recognition system. Lastly we will note a number of problems that arise with this picture.

3. The last section considers how developmental evidence will constrain the distributed model. Although many models of word recognition are static and do not include developmental accounts, in this project, we will seek to make our distributed model compatible with evidence from language acquisition. This will include evidence from the simultaneous acquisition of two languages in children, and from second language acquisition in adults.

1. Neuropsychological evidence.

If bilinguals use separate representational resources to store their two languages, perhaps the operation of the two recognition systems can be individuated in the brain. This might either be seen in the activity of the intact brain, or in patterns of breakdown caused by damage to the brain. We will review these possibilities, along with the more intriguing evidence gained by direct cortical stimulation.

Evidence from the performance of brain intact bilinguals.

In the vast majority of right handed people and many left handed people, the left cerebral hemisphere is dominant for language. One of the central questions addressed with regard to brain intact bilinguals is whether their brains may be ‘wired up’ differently. The simplest way to frame this problem is to ask whether the pattern of lateralisation is different in bilinguals than it is in monolinguals. At this very coarse scale, Vaid and Hall (1991) performed a meta-analysis of relevant studies, and concluded not only that, compared to monolinguals, “the lateralisation of language is... similar in bilinguals”, but also that there were “no clear differential neuropsychological implications of the bilingual experience.” (p. 105). The studies surveyed included the paradigms of dichotic listening, tachistoscopic viewing, dual task performance, electro-encephalography, and event related potentials. However Vaid and Hall pointed out that the strength of their claim was mitigated to some extent by methodological problems with many of the fifty studies they reviewed. One result to emerge was of an apparently greater reliance on right hemisphere processing in bilinguals who acquired both their languages at an early stage. However Vaid and Hall admit this hypothesis has yet to be tested systematically across a range of groups and tasks.

Evidence regarding the functional structure of the system gained from patterns of breakdown.

The second source of evidence is that of language impairment and recovery in brain damaged bilinguals or polyglots (those with more than two languages). If we could show that certain types of damage can eliminate one language independently of another, and other types of damage can show the reverse dissociation, then there would be strong evidence of independent functional structures for each language. On a finer scale, the aspects of selective impairment might show which functional structures are language common and which are language specific.

Unfortunately clear cut evidence is rare here. A wide range of patterns of impairment and recovery have been found (Paradis, 1977, 1989). The presence of some functional localisation is supported by the occasional finding in polyglots of aphasic deficit in only one of their languages. For example, Gomez-Tortosa, Martin, Gaviria, Charbel, and Ausman (1995) recently reported the case of a 22 year old bilingual woman who developed a selective deficit in Spanish, her native language, but not in English, her second language, following surgery on a left perisylvian arteriovenous malformation. The deficit was not an absolute one, but impairment was noticeably greater in Spanish than English. It is at least theoretically possible for impairment to be language selective. On the other hand, many studies report parallel patterns of impairment in each of the bilingual’s languages. For example, Peru and Fabbro (1997) recently reported parallel language impairment in an Italian-English bilingual following a bilateral thalamic lesion due to venous infarction. In a review published in 1977, Paradis reported that 67% of the 138 cases reviewed at that time showed a ‘synergistic’ pattern of recovery for the bilingual’s two languages, whereby there was a similar amount of damage to each language after the injury, and a parallel pattern of recovery.

Damage may be similar for each language, different between the languages, or in proportion to pre-morbid usage. In view of the variation, one consideration is to try and establish the factors that determine differential patterns of damage and recovery. Vaid and Hall (1991) reviewed a number of factors that have been proposed:

(1) primacy of acquisition, whereby the first language to be acquired is more resistant to damage or is the first to recover (Ribot, 1882);

(2) practice with the languages (Pitres, 1895), whereby the more recently used language will be the first to recover (Minkowski, 1963); 

(3) mode of acquisition, whereby languages acquired using the written modality will be more easily recovered than those acquired in the auditory modality (Luria, 1960); 

(4) time and context of acquisition, whereby languages acquired at the same time or in the same context will show similar patterns of damage, while those acquired at different times or in different contexts might show different patterns of impairment (Lambert and Fillenbaum, 1959);

(5) language similarity, whereby structurally similar languages may show more similar patterns of impairment (Ovcharova, Raichev, and Geleva, 1968).

Above we saw that Vaid and Hall’s meta-analysis of hemispheric differences suggested that bilinguals acquiring both languages at an early age might show greater reliance on right hemisphere processing. If early bilinguals do indeed show more right hemisphere use, then one might expect a higher incidence of aphasia in bilinguals who have damage to the right hemisphere (known as ‘crossed aphasia’), when compared to the base rate in monolinguals with similar damage. However, the evidence in this area is contradictory. Galloway (1981) indeed found such a pattern; but Chary (1986) and Karanth and Rangamani (1988) found no difference.

Albert and Obler (1978) cite a number of cases where polyglot speakers understand speech in all their languages but are unable to speak one of them. This is consistent with the view that comprehension and production systems are separable and aspects of the production system are language specific. Green (1986) uses this evidence to construct a model of bilingual language production and control. He refers to a case study published by Paradis, Goldblum, and Abidi (1982) of a woman who was bilingual in French and Arabic. The subject showed a pattern of ‘alternate antagonism’ following a contusion in the left temporoparietal area caused by a road accident. After a period of total aphasia, the patient spoke Arabic spontaneously but showed little spontaneous use of French. On the following day, naming and spontaneous speech were good in French and poor in Arabic. During this time, comprehension was good in both languages. It seems that the respective language representations were intact, but ready access was alternating between the languages. 

This study illustrates that we must be careful in interpreting evidence as revealing information about underlying representation or about the control processes acting on those representations. Indeed, in response to Gomez-Tortosa et al’s findings, Paradis (1996) has argued that selective impairment does not necessarily suggest different anatomical substrates for the representation of each language. He argues that while the Gomez-Tortosa et al data are compatible with such a view, they are not sufficient to demonstrate a different anatomical representation of different languages, and that alternate antagonism points towards an explanation in terms of differential inhibition to each language.

In sum, there is evidence both of parallel impairment and selective impairment of the bilingual’s languages. Differential patterns of impairment and recovery have highlighted the potential importance of specific language structural variables and language acquisitional variables which may mediate language representation in the brain. But because of an inherent lack of random sampling techniques and systematic testing, current data make it hard to tease apart the effect of these variables. Evidence of language selective impairment may reflect damage to language specific functional structures, or it may reflect damage to the control of language representations.

Evidence gained from exploring the working system by direct cortical stimulation.

Severe epilepsy which is untreatable with drugs can be treated using a technique that involves craniotomy under local anaesthetic. The brain is exposed and specific focuses of epileptic activity are removed. In order to do this, it is necessary to check that no critical areas of cortex are removed at the same time. This can be achieved by using a depolarising current to temporarily deactivate small areas of cortex (of about 1-2 cm2) and investigating the impairment caused in awake subjects. Ojemann (1990) reports a number of investigations into cortical language organisation using this technique. In these studies, subjects are generally required to name objects. The disruption caused by the depolarising is then examined. Such an approach has been applied to naming in bilinguals (Cawthorn, Lettich, and Ojemann, 1987; Ojemann, 1983; Ojemann and Whitaker, 1978; Rapport, Tan, and Whitaker, 1983). In these studies, the same pictures of objects are used for eliciting names in each language. These studies show that some degree of separation in the areas responsible for object naming in each language was present in every patient tested, provided they were reasonably proficient in each of their languages. Depolarisation of some sites disrupted naming in one language only, depolarisation of different sites disrupted naming in the other language only.

Ojemann reported that age of acquisition and proficiency in each of the languages appeared to be important factors (Ojemann, 1990). Essential areas for naming in languages that were acquired later in life tended to cover a larger cortical area than those acquired earlier in life. Language proficiency appeared to relate to the type of errors caused by the inactivation of the cortex through depolarisation. Inactivation in a proficient language usually resulted in total loss of speech, but for the less proficient language, in hesitations or misnaming. One interpretation of this evidence was that as language proficiency increases, the total area of cortex responsible reduces.

This evidence suggests once more that factors of acquisition and proficiency are relevant in determining the structure of the language system. However, Paradis (1996) has questioned the interpretation of the electrical stimulation studies. He comments:

“...At the sites alleged to be subserving only one language, the responses to stimulation were not all or nothing, as one would expect if reaction to stimulation were to be indicative of presence or absence of a particular language at a particular site, but three of fifteen. Given that the differential responses occurred only at the periphery of the language area, what this more likely seems to indicate, then, is that on some occasions the stimulation touched upon the language zone, and on others it was slightly off... [This evidence does not demonstrate] that each language of a bilingual speaker has different anatomical representation.” (Paradis, 1996, p.172).

Conclusion from neuropsychological evidence.

In conclusion, several sources of neuropsychological evidence have been applied to the question of bilingual language processing. Lateralisation studies of normal bilinguals failed to reveal any major differences in structural organisation. Evidence from brain damage suggested patterns of language selective impairment could arise but their interpretation as pertaining to issues of representation or to issues of control was not clear. Direct studies of fine scale cortical processing using an intra-operational cortical depolarising technique again revealed some elements of language specificity, but the implication of these findings is disputed. In short, none of the neuropsychological evidence points unambiguously to the presence of anatomically separate language representations in the bilingual’s brain.

2. Psycholinguistic Evidence.

From the psycholinguistic perspective, we will attempt to deduce the underlying structure of the system from patterns of behaviour that bilinguals exhibit over a range of tasks. This will include tasks such as lexical decision (visual and auditory), naming, translation, picture naming, semantic categorisation, word fragment completion, free recall, and bilingual versions of the Stroop task.

What performance indicators would satisfy us that bilinguals have separate dictionaries for each language? One criterion is that performance in one language should be independent of performance in the other language. Whatever we do in Language A, this should have no later effect on our performance in Language B. Kirsner, Lalor, and Hird (1993) have set out this approach more formally. If one wishes to establish which of a set of attributes form the boundaries or partitions in a representational system, one should vary each of those attributes in turn, and observe whether transfer occurs across the different values of each attribute. Transfer can be said to have occurred when an operation which has affected the system when the attribute is set to 1 produces similar effects when the attribute is later set to 2 (whatever 1 and 2 may be). If transfer across attribute values occurs, it is assumed that this attribute does not form a relevant partition of the system. With regard to lexical representation, one operation which we may use is practice, resulting in improved performance over time on a given linguistic task. Practice may be achieved through something as simple as a single prior exposure, resulting in faster recognition on the next occasion (i.e. priming effects), or through rate of exposure over a length of time, defining a word’s frequency.

This approach will become clearer if we take the example of orthographic case. Let us say that we have a theory that the attribute letter case is a key partition in the lexicon. We might have a hypothesis that there are two sets of word representations in the lexicon, identical except for the fact that one set corresponds to lower case words, the other to UPPER CASE WORDS. In order to establish whether this is the case, we would observe whether performance on a given set of words presented in lower case aids later performance on those same words when presented in UPPER CASE. If no such transfer occurred, we could claim that letter case did indeed form a partition or boundary in lexical representation. If transfer occurred (as is in reality the case), then we would conclude that the lexicon is not organised with regard to letter case.

In application to the issue of bilingual lexical representation, the relevant attribute is language. We must now consider whether performance on a set of words in one language aids performance on the same set of words when presented in the other language. If there is no transfer, we may conclude that the lexicon is organised along the lines of language and that the system should be seen as having separate representations for each language. The consideration of between language effects will form the central tool of investigation in this project. It will be the tool we use to determine the evidence against which the performance of cognitive models (and later simulations) will be evaluated. We will now consider the main empirical evidence that implements this tool.

Main empirical findings and the basic picture of bilingual lexical representation.

At the end of this section, we will suggest that the bilingual has separate lexical representations for each language (no transfer between languages on tasks which access information about word forms) but a common set of semantic representations (transfer on tasks which access word meaning).

The earliest views of bilingual language representation were oriented toward context of acquisition (Weinrich, 1953). Languages acquired in the same context produced ‘compound’ bilinguals. Languages acquired in separate contexts produced ‘co-ordinate’ bilinguals. In the early stages of acquisition of a second language, the second language may be acquired initially by reference to the first mastered language. In this case, we have ‘sub-ordinate’ bilinguals. This terminology changed over time to focus more on the underlying representations. The distinction between compound and co-ordinate changed variously into the “common or shared store” versus the “independence” hypotheses (e.g. Kolers, 1963; Kolers and Gonzalez, 1980), the “interdependence” versus the “independence” hypotheses (e.g. McCormack, 1977), and the “single code” versus “dual code” hypotheses (Durgunoglu and Roediger, 1987).

The basis of evaluation of the respective hypotheses was whether there was transfer between languages in a given task. Kirsner, Brown, Abrol, Chandra, and Sharma (1980) used Hindi-English bilinguals in a lexical decision task. There were two blocks of trials, and lexical decision was performed either in the same language in each block or a different language. For instance, subjects might be asked to decide in a given block whether each stimulus was a Hindi word. In this block, all nonwords would be based on Hindi words. Words were repeated either between two blocks in the same language, or between two blocks in a different language, where the second presentation of the word was a translation equivalent. Kirsner et al showed repetition priming - where the second presentation was responded to more quickly than the first - in the same language condition but not in the cross-language condition. Presentation in one language did not help later presentation in a second language. Kirsner, Smith, Lockhart, King, and Jain (1984) repeated this experiment with English-French bilinguals (Experiment 1), now using two languages that were orthographically much more closely related. Again they found a within language priming effect but no cross-language priming effect between translation equivalents. Scarborough, Gerard, and Cortese (1984) found the same effect with Spanish-English bilinguals.

In two further experiments (2 and 3), Kirsner, Smith, et al, replaced the first block of lexical decisions with either a) the requirement to produce a word’s translation equivalent when given the first letter of that translation equivalent, or b) the requirement to fit a word into a sentence in the same language as that in which it was presented. Between and within language priming occurred when the subject had to produce the translation equivalent, but not when required to fit the word into a sentence. This suggests that cross-language priming occurs only when the translation equivalent is explicitly accessed on the first presentation.

Were the preceding studies to have revealed cross-language priming between translation equivalents, we could have pointed to the presence of a combined lexicon. However, the absence of such effects on its own does not point to the presence of separate lexicons. This is because for a monolingual, we don’t find long term repetition priming between synonyms. Thus presentation of DOG does not facilitate recognition of HOUND when it appears several trials later. So if in a French-English bilingual, CHIEN were to serve as a ‘synonym’ to DOG, the absence of priming between CHIEN and DOG would not be surprising, or suggest that the bilingual situation was different from the monolingual. 

More telling evidence comes from the situation where a word exists in both languages, and has a different meaning in each. At the lexical level, the same orthographic form now has to be accessed in either case. Moreover the word forms should be unconnected at the semantic level. A lack of transfer here would show that representations of the same orthographic form in either language were partitioned by language. Such words do exist, and are referred to as non-cognate homographs. ‘Non-cognate’ means that the words have originated from different roots. ‘Homograph’ means that they happen to have the same spelling in each language
. Some examples from English and French are MAIN, PAIN, FIN, COIN.

Gerard and Scarborough (1989) used a blocked lexical decision task similar to the previous experiments, with English-Spanish bilinguals. However, they also included some non-cognate homographs. For example, the English word RED also exists in Spanish, but means ‘net’. Gerard and Scarborough exploited the fact that because these words have different meanings in each language, they often have different frequencies of usage. Word frequency is a strong determinant of response speed in the lexical decision task. Gerard and Scarborough were interested in whether the non-cognate homographs would be named according to their frequency within each language, or whether they would be named according to some overall frequency of occurrence of the word form, perhaps an average of the frequencies in each language. For example, RED is a frequent word in English, but less common in Spanish: would this word be recognised slowly in the lexical decision task if the language context were Spanish, but quickly if it were English? Or would the extra practice in recognising the word form in an English context transfer across to help recognition of the word form in a Spanish context?

Gerard and Scarborough found that non-cognate homographs were recognised according to their within language frequency. Similar findings have also been reported for French and English (French and Ohnesorge, 1995). This result is strongly suggestive that different lexical representations of the same word form are being accessed in each case, and thus that the lexical representations for each language are separate.

The evidence so far has come from lexical decision. What of other tasks? We will see that some other tasks do show cross-language transfer effects, and these will turn out to be situations where the task focuses on semantic information. Durgunoglu and Roediger (1987) used tasks with varying processing demands to examine the language representations of Spanish-English bilinguals. Subjects were given a set of words to study, after which their performance was tested either on a free recall task, or on a word fragment completion task using samples of words which included some of those present in the initial study phase. On the word fragment completion task, if the language of study matched the test language, fragment completion rates were significantly improved, but not if the test language was different. Similar results have also been found with Turkish and English (Watkins and Peynircioglu, 1983). On the other hand, during free recall, the language of presentation did not matter: language of study played little role in determining performance on this task. Smith (1991) used the word fragment completion task with French-English bilinguals under two conditions. In the study phase, subjects either read lists or were asked to generate words by inference from sentences (e.g. “The swimmer was eaten by the ______” ( SHARK). As with Durgunoglu and Roediger, reading did not lead to cross-language transfer between translation equivalents. But the requirement to generate words by semantic inference did cause cross-language transfer.

Cross-language transfer effects are found under conditions producing semantic priming in a monolingual context. A word is recognised more quickly if it immediately follows another word with a similar meaning (e.g. HOUND appears on the trial following DOG). Kirsner, Smith, Lockhart, King, and Jain (1984) used semantic priming in the lexical decision task with English-French bilinguals (Experiment 5). They found that a facilitation effect arose when a word was preceded by a semantically related word, although the prime had to appear on the immediately preceding trial. They further found that the semantic priming effect occurred across languages as well as within (e.g. when CHIEN immediately followed DOG). While the cross-language semantic priming effect was only half the size of the within language effect, other studies have reported equal within language and between language effects (e.g. Chen and Ng, 1989).

Transfer effects, then, only appear in tasks which rely on semantic information, such as Durgunoglu and Roediger’s free recall task, Smith’s word inference condition, or the automatic effects involved in semantic priming. For tasks that primarily access lexical information, such as lexical decision and word fragment completion, there is no transfer (Smith, 1991). Lexical and semantic information appear to be showing different characteristics here, and indeed, there is good evidence to believe that these levels of representation are independent. Evidence for this comes from experiments which show that semantic and lexical variables have different effects on performance in tasks such as letter matching (Besner, Smith, and MacLeod, 1990) and same/different judgements (Barron and Henderson, 1977). From a neuropsychological perspective, patients have shown acquired dyslexias whereby they can read aloud irregular words like YACHT (requiring lexical access) without understanding their meaning. This implies that these patients retain lexical access but have lost semantic access (Funnell and Allport, 1987; Schwartz, Marin, and Saffran, 1979).

From the pattern of transfer and using our framework, we might deduce that the bilingual language system contains separate lexical representations for each language but a common set of semantic representations. Two separate dictionaries point to the same set of meanings. Figure 3.1 shows this structure. Note that we have included “switches” in this model, for if the lexical representations are separate, then there must be some way in which the bilingual decides to recognise FIN as the thing on the back of a shark rather than the end of something, or to pronounce something with four legs and a waggley tail as a dog rather than a chien. The notion of switches is a controversial one, and leads us on to a set of complications that arise with the simple model we have so far depicted.

Complications to the basic picture.

There are three types of complication. Firstly, some words don’t always behave in the way that they should according to the basic picture. Among these are translation equivalents, cognates, non-cognate homographs, and concrete words. Secondly, a debate has arisen concerning the way bilinguals control their representations and whether they employ ‘switches’. Thirdly, some objections have been raised regarding the use of the priming paradigm to investigate underlying representations.

Figure 3.1: Structure of the bilingual lexical system according to the basic picture. Orthographic representations are shown for visual comprehension and phonological representations for production, as per a naming task. There would also be parallel sets of phonological representations for auditory comprehension and orthographic representations for written production.
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[image: image3.png]Figure 3.2: Descriptive “nodal” models of bilingual lexical representation. a) from
Kirsner, Smith, Lockhart, King, and Jain (1984); b) from De Groot and Nas (1991).
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[image: image19.emf]Priming in the Orthographic Autoassociation Network

using Persisting Activation (750 epochs, 5 hidden units, learning rate = 0.5)
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[image: image20.emf]Priming in the Orthographic Autoassociation Network

using Persisting Activation (2-layer network, 250 epochs, learning rate = 0.065)
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using Persisting Activation (250 epochs, 5 hidden units, learning rate = 0.5)
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Words that don’t behave the way they should.

Translation Equivalents.

In the semantically primed lexical decision task, subjects are shown a prime stimulus followed a short period later (typically less than a second) by a target stimulus on which they must make a lexical decision. When both are words and they are semantically related, the response to the target word is facilitated. However, Chen and Ng (1989) showed that priming between translation equivalents was greater than that between just semantically related words, an effect also found by Jin (1990). For example, the semantic priming between BREAD and PAIN would be greater than for BREAD and GATEAU.

Keatley and de Gelder (1992) used a similar paradigm except that they required their subjects to give a speeded response (i.e. before a certain deadline). They found that the deadline had no effect on the within language semantic priming effect, but that it eliminated the between language effect except for translation equivalents. They took this to support the separate stores model of bilingual representation with the caveat of direct links between translation equivalents. Further they suggested that the elimination of semantic priming in the between language condition in the presence of a deadline, could be taken as indicating that in the absence of the deadline, between language semantic priming effects must be due to post-access meaning integration. However this account raises the question of why post-access meaning integration should work as an account for semantic priming in the between language case but not in the within language case, where the effect is normally put down to spreading activation in the semantic system. At this point, their finding that a response deadline may eliminate some between language effects is an intriguing one, but yet to be established as a crucial characteristic of between language priming.

If there are “direct links” between translation equivalents in the bilingual lexical system, then a number of researchers have found that in unbalanced bilinguals, these links must be asymmetric. In semantic priming, L1 routinely aids L2 more than L2 can help L1 (Altarriba, 1992; Frenck and Pynte, 1987). An asymmetry has also been found in translation tasks, where translation from L2 to L1 is faster than translation from L1 to L2 (Sanchez-Casas, Davis, and Garcia-Albea, 1992).

Cognates.

Cognates are words that originate from the same root, and thus have a similar or identical meaning in each language. They may either have a similar form in each language (e.g. for French and English, LETTRE and LETTER), or an identical form in each language (e.g. TABLE and TABLE), in which case they are referred to as cognate homographs. In the basic picture, we saw that repeating a translation equivalent in a second cross-language block of lexical decision trials produced no evidence of repetition priming. However, Gerard and Scarborough (1989) and Kerkman (1984) have shown that this does not hold for cognate homographs. They showed that if cognates were repeated across languages, even over long lags (typically up to half an hour), cross-language facilitation was found with this class of words. Cristoffanini, Kirsner, and Milech  (1986), employing a similar paradigm, used cognates which varied in how similar their forms were in each language. Their results were consistent with the view that cross-language transfer effects occurred for cognate homographs, and reduced as the forms of the cognates in each language became less similar.

Cognates not only demonstrate cross-language transfer from a single exposure, but from multiple exposures, in the form of frequency effects. A number of researchers have reported that response times in the lexical decision task to cognates in the non-dominant language of bilinguals were faster than ordinary words of matched frequency (Caramazza, and Brones, 1979; Cristoffanini, Kirsner, and Milech, 1986; Gerard and Scarborough, 1989). To give an example, for a bilingual whose weaker language was French, this would imply that LETTRE was recognised more quickly than words of comparable frequency in French, by virtue of the existence of the word LETTER in English.

Taken at face value, these results suggest that while there are separate lexical representations for non-cognate translation equivalents in each language, cognate translations share the same lexical representations.

A number of studies have also shown cross-language transfer between a word and its translation when they are presented very close together (i.e. within a few tens or hundreds of milliseconds of each other). Davis, Sanchez-Casas, and Garcia-Albea (1991) (cited in de Groot, 1992), de Groot and Nas (1991), and Sanchez-Casas, Davis, and Garcia-Albea (1992) used similar but non-identical cognates in this paradigm and demonstrated that the priming effect was greater for cognate translation equivalents than non-cognate translation equivalents. They also employed a masked priming technique, where the presentation of the prime was too brief to be noticed by the subject. Sanchez-Casas et al established this effect using Spanish-English bilinguals. But they also included a control condition to check that the superior priming for cognates was not due to surface similarity. For example, in the cognate translation condition, for a prime-target pair such as rich - rico, they included a control condition employing an initial nonword with the same similarity relation to the target, e.g. rict - rico. A nonword with the same degree of surface similarity produced no equivalent priming.

Non-cognate homographs.

As we have seen, non-cognate homographs are words that derive from a different root in each language, and thus coincidentally share the same form while having a different meaning. Klein and Doctor (1992), using English-Afrikaans bilinguals in a lexical decision task, found that non-cognate homographs were processed more slowly than cognate homographs of equivalent frequency. The fact that the same word form supported a different meaning in each language appeared to lead to inhibition during recognition of the word form.

Gerard and Scarborough (1989), using English and Spanish, found that not only did cognate homographs show cross-language transfer in the blocked lexical decision task, but so too did non-cognate homographs, and to the same extent. This initially suggests that the between language transfer effect is based on similarity of form rather than similarity of meaning. As a consequence, not only cognate translation equivalents, but also non-cognate homographs must be thought of as sharing common representations in the bilingual’s lexical system. Yet this is not consistent with the picture generated by the within language frequency response of non-cognate homographs, taken to suggest language independent representations! We will later question Gerard and Scarborough’s finding with regard to these words. We will suggest that the cross-language priming effect for non-cognate homographs result is an artefact, and that under different conditions, it might not arise. In Chapter 8, we will present an experiment implementing those conditions, and indeed find that the cross-language priming effect for non-cognate homographs disappears. 
Concrete words.

Jin (1990) used the semantic priming paradigm in the lexical decision task to examine the effect of imageability on patterns of priming. Using Korean and English bilinguals, he showed that when the prime was presented in one language and the target in the other, patterns of priming consistently showed a greater cross-language transfer effect for concrete words (e.g. CHAIR) than for abstract words (e.g. LOYALTY). In a second experiment with monolinguals, equivalent priming was found for concrete and abstract pairs within their single language.

Control of bilingual language representations.

If we assume the bilingual has separate dictionaries for each language, then we need to adopt a position on how the bilingual controls his or her dictionaries. The earliest ideas on the control of bilingual language system suggested an either/or switch which would only allow a single language to be operating at a given time (Penfield and Roberts, 1959). Subsequently, Macnamara and Kushnir (1971) put forward a two switch theory, based on evidence that subjects took longer to name or read mixed-language lists of words than those in a single language. They suggested that the slower times on mixed lists reflected time taken to switch between using each language, and hypothesised both an input switch for comprehension and an output switch for production. With regard to production, it is clear the bilingual can choose which language to speak in: there must be an output switch. With regard to comprehension, there has been a debate concerning the need for an input switch. The alternative is that both mental dictionaries are searched at once - in which case, some other explanation is needed to account for the longer time taken on mixed-language lists. Evidence has been put forward to support both the presence and absence of an input switch.

a) “There must be an input switch because mixed language lists take longer than single language lists!”

Based on evidence that anticipation of a switch in language could reduce the time penalties for switching in production (Macnamara, Krauthammer, and Bolgar, 1968) but not in comprehension (Macnamara and Kushnir, 1971), Macnamara and Kushnir suggested the input switch was automatic and stimulus driven, while the output switch was under voluntary control. However, in a lexical decision task using Spanish-English bilinguals, Scarborough, Gerard, and Cortese (1984) showed that when asked only to respond positively to words in the current language, subjects could reject words in the non-active language in the same amount of time as nonwords. In the context-relevant language, words from the context-irrelevant language had taken on the status of nonwords. Scarborough et al took this to indicate the presence of a voluntary input switch which could turn off language comprehension in one language system. This finding is a controversial one and other researchers have found inconsistent evidence (Altenberg and Cairns, 1983; Nas, 1983). We will examine this effect is some detail in Chapter 8. Again we will suggest that it might be artefactual, and under different conditions, fail to replicate it.

While the idea of an input switch was initially based on the extra time it took subjects to read mixed language lists, Grainger and Beauvillain (1987) found evidence for similar switch costs when they used mixed lists in a lexical decision task, with English-French bilinguals. However, they also found that if the words only showed orthographic characteristics specific to each language, switch costs disappeared. Meyer and Ruddy (1974) looked at English-German bilinguals who were required to perform a ‘paired’ lexical decision task. Subjects were presented with two stimuli and had to respond positively only if both were words. They found that subjects took longer to respond when the words were of different languages than the same, and took the delay as reflecting the time to switch language. However, Kirsner, Smith, Lockhart, King, and Jain (1984) repeated this task with English-Hindi bilinguals and found no cost for mixed language pairs. They suggested that the delay in the Meyer and Ruddy study occurred because German and English share similar orthographies whereas Hindi and English have different orthographies
. In short, these studies suggest that control may be highly dependent on the between language similarity patterns of the stimulus.

Soares and Grosjean (1984) found further evidence for the presence of an input switch using a phoneme triggered lexical decision task on auditory stimuli. Subjects were played a sentence and asked to perform lexical decision on the word/non-word starting with a certain phoneme. Using Portuguese-English bilinguals, they demonstrated that if the target word was presented in a different language to the preceding sentence context, subjects took consistently longer to recognise it. Grosjean (1988) followed up the study by examining the word-candidates that French-English bilingual subjects produced for a key word when given progressively longer samples of a sentence. To begin with, subjects were played the introductory sentence followed by only 50ms of the key word, and asked to say what word it could be. The process was then repeated, playing progressively more of the key word, with their candidates recorded at each point. However, the key word could be in a different language to the sentence. Analysis of the candidates showed that when the key word was in a different language from the introductory sentence, the number of “slices” required for identification depended on whether the word was plausible/existed in the old language, and whether it was pronounced using the accent of the old language or the new language. In other words, subjects took longer to switch languages in their word comprehension if the stimulus on which the switch occurred was similar to words in the language of the first part of the sentence. Control appears once again to be sensitive to similarity. Li (1996) has found similar evidence using this paradigm with English-Chinese bilinguals.

b) “There can’t be an input switch because bilinguals show cross-language Stroop effects!”

The view of a bilingual’s lexical representations as being controlled during the comprehension process is challenged by evidence from bilingual Stroop tasks. Subjects are asked to name the colour of the ink in which certain stimuli appear, using one of their languages. Some of the stimuli form words in the bilingual’s other language, corresponding to colours different to the colour of the ink. On these trials, subjects cannot prevent themselves from semantically processing the word in the task-irrelevant language, causing interference in response. This argues against a voluntary comprehension switch (Dyer, 1971; Preston and Lambert, 1969). A similar effect was found when a task-irrelevant language word appeared in a picture which had to be named in the task relevant language (Ehri and Ryan, 1980), and when task-irrelevant language words surrounded a word which had to be categorised in the task-relevant language (Guttentag, Haith, Goodman, and Hauch, 1984; see also Fox, 1996, in a related paradigm). 

However, as with the ‘cost’ of switching language, the between language similarity patterns of stimulus words in bilingual Stroop tasks turn out to be of importance. Let us say that we are trying to name the colour of the ink of a stimulus in English, and that our other language is French. Magiste (1984) found that there was more interference between languages when the relevant colour word had a similar form in each language than when it was different. Thus in our example, if the stimulus appears in red ink, our correct response of “Red” will be more delayed if the stimulus is the word BLEU (similar to BLUE) than if it is JAUNE (dissimilar to YELLOW). Further Fang, Tzeng, and Alva (1981) have suggested that the between language interference also depends on the orthographic similarity of the languages involved: it is greater when the orthographies of the competing languages are more similar (although Lee, Wee, Tzeng, and Hung, 1992, report inconsistent results on this issue).

Tzelgov, Henik, and Leiser (1990) have specifically examined subjects’ abilities to control between language interference on the Stroop task, depending on their expectations of the language of the distracter word. Tzelgov et al found that if unbalanced bilingual subjects were expecting an L1 distracter word, they could reduce the between language interference when naming the colour in L2. However, they could not reduce the interference when naming in L1 and expecting a distracter in L2. In other words, they were better able to de-select their better language. To sum up, language control in the Stroop task seems to depend both on the stimulus properties and the proficiency of subjects in each language.

In sum, the case of the input switch is a controversial one, particularly in the light of the robust evidence of between language Stroop interference. The difficulty in evaluating the evidence for a comprehension switch is one of deriving good ways to measure degrees of comprehension. A task like lexical decision involves a response mechanism to convert recognition into a button press, thus introducing another step between comprehension and measurement. If theoretically we deny there is an input switch, perhaps on the grounds of Stroop evidence, then we must find some other source for the time cost in switching between languages in the lexical decision task. The response mechanism is one such candidate. However, the method used by Grosjean (1988) to evaluate recognition times during language switching appears to avoid the requirement for a response mechanism, and still reveals evidence of switch costs (albeit now highly sensitive to the nature of the language-switched word). It may be that the sophisticated perceptual mechanisms required to comprehend noisy speech signals indeed involve some sort of input switch. Los (1994) has reported that switching between perceptual strategies in processing noisy stimuli can incur time costs. It remains to be seen whether an input switch is appropriate for a model of bilingual written word recognition. We shall shortly see that a number of the models proposed appear to embody such a mechanism. The process of language switching itself will be investigated in some detail in Chapter 9, and in two empirical studies presented in Chapter 10. We will conclude there that the cost of switching language in visual word recognition may arise from processes reconfiguring the response mechanisms. If this is the case, we could support the view that there is no input switch, and that both lexicons are active at once. 

Priming.

Using the framework put forward by Kirsner, Lalor, and Hird (1993), we have reviewed evidence of transfer effects between the lexical representations of each language. One example of this has been the use of repetition priming in the lexical decision task, where a word is recognised in one language, and some time later, a corresponding word is presented in the other language. However, de Groot and Nas (1991) and de Groot (1993) have raised questions about the validity of ‘long lag’ repetition priming for investigating bilingual and even monolingual lexical representation
. They point to findings by Oliphant (1983) and Forster and Davis (1984).

Oliphant (1983) used monolinguals in a standard repetition priming paradigm, and found the expected facilitatory effects on the second presentation of a word. However, when the first presentation of a word occurred in the written instructions to the experiment rather than in the experiment proper, no repetition priming was found. Oliphant concluded that subjects had to be aware of the fact that some of the words were being presented a second time for the facilitatory effects to occur. Forster and Davis (1984) on the other hand used a masked priming technique where the time between subsequent presentations of a word was only of the order of hundreds of milliseconds. In this case the initial presentation of the prime was masked so that the subjects were unaware of the repetition. Priming was found in this circumstance. De Groot and Nas have proposed that lexical based priming is a very transient effect of the order of several hundred milliseconds, best examined using Forster and Davis’s masked priming technique. They have suggested that long lag repetition priming is an episodically based effect, requiring that subjects be aware of repetitions, and thus that long term priming does not purely reflect underlying lexical representations.

Since priming is a major investigative lever in this project, and one that will be employed in an empirical study later in this project, we must consider these objections carefully. In Chapter 2, we reviewed the conventional accounts of repetition priming. Briefly, they suggest that accessing a word in the mental lexicon makes that word easier to access for some time afterwards. De Groot and Nas, however, side with an account that suggests subjects recognise a word more quickly on the second presentation because they recall having seen it previously (Jacoby, 1983a, 1983b). This contrasts a strategic use of episodic memory with the automatic processes of word recognition in the conventional account. 

In support of their view, de Groot and Nas have pointed in particular to Gerard and Scarborough’s (1989) findings that non-cognate homographs (same form, different meaning) demonstrate as much cross-language priming as cognate homographs (same form, same meaning). They take this to imply that subjects are explicitly remembering a word form and are thus aided in recognising that form on its repetition. And on this view, remembering tells us nothing about the nature of the lexical representations underlying recognition.

There are a number of criticisms that can be made of this position. Firstly, the use of episodic memory in preference to lexical representations in performing the lexical decision task would seem to be replacing a simple task with a hard task (Kirsner, Lalor, and Hird, 1993). For example, is it easier to decide whether “triggered” is a word, or whether it appeared a couple of pages previously? Secondly, neuropsychological evidence suggests that repetition priming also occurs in amnesiacs, whose short term memory for episodes has been impaired (Parkin, 1982).

Thirdly, Scarborough, Cortese, and Scarborough (1977) and Scarborough, Gerard, and Cortese (1979) carried out a number of experiments investigating long lag repetition priming in the lexical decision task. They then repeated their main experimental procedures but with one alteration: they replaced the lexical decision task with an Old/New test. In the second phase, subjects now had to decide simply whether they had seen an item before or not, rather than whether the stimulus was a word. The Old/New task should precisely focus on subjects’ recollection of previous episodes. If the priming effect comes from such recollection, the pattern of results in the Old/New test should show the same characteristics as the priming effects in the lexical decision task.

Scarborough et al (1977) found that the pattern of results was quite different for the Old/New test. Unlike the priming found in lexical decision, words and nonwords showed the same pattern of results. The size of the repetition priming effect for words did not decrease much over the course of 10 or 20 experimental trials. Yet Old/New performance decreased the more trials that intervened since the first presentation of the stimulus and its repetition. Further, in the Old/New task, words no longer showed the frequency effect found in lexical decision. Scarborough et al (1979) had subjects perform the Old/New task after either naming words or naming pictures. They found superior performance after naming pictures. This is the opposite of the pattern they found with lexical decision, where prior word naming primed later lexical decision but picture naming did not. In these experiments, then, episodic recollection did not show the same characteristics as long lag word repetition priming.

Lastly, recent work by Jacoby, Toth, and Yonelinas (1993) has suggested that strategic recollection and automatic memory may both contribute to performance, and moreover that these aspects may be dissociated. Jacoby et al had subjects read out loud a list of words under conditions of full-attention or divided-attention (produced by having them monitor a string of numbers for three odd numbers in a row). Subjects were then given a word stem completion task, and asked to complete the stems with words they had seen before. If they could not, they were told to guess completions to the stem. The results showed that subjects in the divided-attention condition were less likely than the full-attention condition to complete the stems with words they had seen (although they still performed above base rate). Jacoby et al suggest that subjects’ performance in the divided-attention condition was inferior because the distractor task had disrupted their ability to recall the words. Their performance was still above base rate because recognition of the words in the reading phase had allowed more ready access to those words in the stem completion phase - i.e. the standard repetition priming effect.

In a second experiment, subjects were asked to complete the word stems with words different from those they had seen. In line with instructions, the full-attention condition now showed a big reduction in the number of completions to words they had seen. These subjects deliberately did not complete stems with words they remembered seeing before. The divided-attention condition, however, still showed the same above base rate level of performance, completing many stems with words they had seen - but evidently did not remember seeing. In this experiment, Jacoby et al appear to have stripped performance of the contribution of strategic recollection by distracting subjects during the initial exposure to the primes. Stripping away recollection still left a significant effect of automatic memory which generated preferential completions for the word stems from word representations which had been primed by the first exposure.

This experiment demonstrates that there may well be some contribution of recollection to priming effects, as de Groot and Nas claim. But it also demonstrates that recollection by no means accounts for all the priming effect. Indeed in Jacoby et al’s experiment, the automatic memory component of performance appeared larger than the strategic recollection component by a factor of two. When the strategic memory component is stripped away, the automatic memory component corresponds to priming of the lexical representations. Current evidence, then, may still be taken to support the view that priming at least in part reflects alterations to underlying representations; and that through the use of transfer effects, it may be used as a tool to reveal the partitions in those representations, according to the Kirsner, Lalor, and Hird framework.

Summary.

In our review of the psycholinguistic evidence, we have introduced a methodology for moving from experimental evidence to underlying functional structure. We have reviewed initial evidence to draw a basic picture of the bilingual’s word recognition system (independent lexical representations, shared semantic representations). We have then reviewed a number of complications to this picture: some classes of words demonstrated behaviour inconsistent with the picture (notably where there was between language similarity in form or meaning); there was a debate concerning the need for an ‘input switch’; and there were some concerns about the lexical decision task as a tool for revealing underlying representations - concerns which were largely addressed. We now turn to look at the constraints offered by bilingual language acquisition.

Development

In this section we will outline two sorts of developmental constraints for bilingual language representations. The first will be from the simultaneous acquisition of two languages. The second will be from second language acquisition.

Simultaneous acquisition of two languages.

Consider an infant pitched into a bilingual world. Let us assume that conceptual development is to some extent autonomous. What kind of developmental evidence might tell us about the nature of the child’s emerging language representations? One source of evidence is the language which such children produce. If the child initially mixes up the languages indiscriminately, and then later moves to speaking in either one language or the other, we could take this as evidence that initially there is a single language system which later splits in two. This is known as the one-system theory of bilingual acquisition. When the child realises that there are two languages in its world, its language representations are restructured. Thus Klausen and Plunkett (1987) describe “the need for some internal re-organisation process if the child is to differentiate the two linguistic systems.” (p. 487, cited in Arnberg and Arnberg, 1992).

Initial studies of the language produced by children developing two languages supported this picture. Redlinger and Park (1980) compared language mixing rates of four 2-year-old children growing up in a German-speaking community but with one foreign language speaking parent (English, French, or Spanish), over periods of between 5 and 9 months. They compared language mixing rates against the children’s stages of linguistic development, measured by Mean Length of Utterance (MLU). Language mixing was defined as “the combining of elements from two languages in a single utterance” (p. 339-340). Redlinger and Park reported that, according to the children’s parents, the children were not exposed to language mixing within sentence boundaries. Their results showed that initial language mixing rates (30%, 21%, 12%, 2.6% for the four children) diminished during the period of the study, in line with a growth in the children’s language development as measured in MLU (to 21%, 4%, 3%, and 0% respectively). Redlinger and Park took this as evidence of the one-system theory, and suggested that the data revealed the children to be at various stages in a gradual process of language differentiation. Vihman (1985) found similar evidence when examining the acquisition of Estonian and English in a single child case study. Vihman suggested that the language differentiation process was complex, involving the “development of self-awareness and sensitivity to standards in the second year which provides the motive for the child to begin to avoid mixed-language utterances, and to choose his language according to his interlocutor” (p. 298). Vihman found the rate of mixed-language utterances dropped from 30% at 1 year 8 months to 7% at two years.

However, the data from studies which have investigated bilingual acquisition do not necessarily support the conclusions that have been based on them. Genesee (1989) discussed the implications of the evidence showing a reduction in language mixing with development. Even if we accept wholesale the evidence that in young children, language mixing occurs at all levels (phonological, inflectional, whole lexical items, at the level of phrase
, syntactic, semantic and pragmatic), Genesee claimed that the conclusions we are obliged to draw are not clear-cut. Given that adult bilinguals themselves mix languages, (referred to as code-switching: Sridhar and Sridhar, 1980), the onus would seem to be to establish firstly that the children’s mixing is of the wrong sort, and secondly that the input to the child is itself not mixed. The strongest evidence for the one-system theory of acquisition would be indiscriminate mixing of languages when the child is only ever exposed to a single language at one time. Yet when Genesee analysed previous examples of child language mixing, in all studies there was evidence that this mixing was related in some way to context. Furthermore, it was far from clear that children were ever exposed to strictly single language communications in their environments.

The presence of language mixing need not imply a single language-undifferentiated system. It may demonstrate that the child has yet to develop an understanding of the appropriate sociolinguistic rules for when to use each language. Lanza (1992) presented evidence that a bilingual child as young as 2 years of age can code-switch according to appropriate language context. The child predominantly mixed language in the presence of his father, who tolerated it. His mother maintained a monolingual context, which the child respected. If the child can reduce mixing rates when it is contextually appropriate, the ability to distinguish the languages must be present. Genesee’s conclusion was that the production evidence is ambiguous enough to support either the one-system view, or the two system view. Indeed he suggested that “bilingual children are able to differentiate their language systems from the beginning, and that they are able to use their developing language systems differentially in contextually sensitive ways” (p. 174).

What kind of representations does the bilingual child develop for comprehending language? Eimas, Miller, and Jusczyk (1987) reviewed the evidence from studies investigating the speech perception of infants. Infants come into the world endowed with highly developed mechanisms for the perception of speech. They have the ability to distinguish and categorise virtually all of the information that is relevant to the phonetic categorisation in natural languages. Eimas et al continue

“experience with the parental language serves to maintain and perhaps enhance those categorisations for which there is an early correspondence (cf. Aslin and Pisoni, 1980; Strange and Broen, 1980). On the other hand, experience will eliminate a category or alter the boundary location between categories in situations where the correspondence is quite disparate (cf. Eimas, 1975; Lasky, Syrdal-Lasky, and Klein, 1975).” (p. 171). 

Thus Werker and Tees (1984) found that infants could discriminate two contrasts not present in the parental language of English at age 6 months, but by 12 months of age, virtually all infants in the study failed to make this same discrimination. This evidence suggests that at a very early stage, the phonological representations of infants tune themselves to the characteristics of the particular language to which they are exposed.

What would happen in the case where there are two languages in the environment? In a review of the acquisition of phonological processing in two languages, Watson (1991) reported that “experimental studies of bilingual-environment children in the pre-linguistic stage are lacking” (p. 31). Given the early specialisation of representations, the absence of this evidence is unfortunate. However, given that Elman, Diehl, and Buchwald (1977) have found evidence that adult bilinguals exhibit differential perceptual behaviour in processing each of their languages, it seems sensible to suggest that the comprehension system quickly identifies the presence of two sorts of sound clusters in the environment, and tunes to those. It is not clear what such dual specialisation implies concerning the nature of the underlying system.

The evidence here has looked at the acquisition of phonological representations and thus is not directly applicable to visual word recognition. Nevertheless, had we found evidence confirming a process of the separation of the two languages, this would support a separate stores model. However, the evidence does not support an initial failure to discriminate the languages. Thus Vihman (1985, p. 317) concluded: “bilingual children are able, from an early age, to differentiate their two linguistic systems”.

Second Language Acquisition.

There are two sorts of questions to ask concerning second language acquisition: Are the bilingual’s lexical representations different if they have been acquired one after the other, as opposed to simultaneously? And is the process of learning a second language the same or different from that of learning a first language?

Studies comparing bilingual subjects’ proficiency in translation and in picture naming (e.g. Magiste, 1979; Potter, So, Von Eckardt, and Feldman, 1984, Kroll and Curley, 1988) suggest that in the initial stages of the acquisition of a second language, subjects show a sub-ordinate (or “word association”) relation between their two languages, where the second language ‘hangs off’ the first. Thus if I’m an English native just starting to learn French, and I come across the word CHIEN, I translate this to the English lexical equivalent DOG, and then access the meaning of this word via my first language. However, very quickly, the second language begins to operate independently and forms direct links with the semantic representations (called “concept mediation”). Support for this view comes from inter-language Stroop interference patterns in trilinguals (Abunuwara, 1992). Altarriba and Mathis (1997) have suggested that L2 begins to form direct links to conceptual representations almost immediately (as soon as the first learning session), and there may be no need to postulate initial access of meanings via L1. It seems likely that both strategies would be available to an early learner. In fact, there is some evidence that the early reliance of L2 on L1 may be sensitive to the way in which L2 is initially taught (Chen and Leung, 1989). If L2 words are taught via pictures rather than via L1, the initial reliance on L1 may be significantly reduced. 

After the initial word association stage, the “sequential” bilingual’s lexical representations then demonstrate the standard picture of apparent independence - (subject to the similarity-based effects we have detailed previously). While there is some evidence that L2 learners may never achieve an equivalent level of reading in L2 (Segalowitz, 1986), the final product of the sequential acquisition process does not appear to be markedly different from that of the simultaneous acquisition process. It is worth noting that the relative language proficiency of the bilingual’s two languages is a significant factor in the results of many of the psycholinguistic and neuropsychological studies reviewed in this chapter. However, levels of proficiency are not confined to second language acquisition: simultaneously acquired languages can have different proficiencies through usage.

Our second question pertains to the relation between first and second language acquisition: do they work in the same way? The idea that the process of acquisition is identical in each case is known as the L1=L2 hypothesis (also referred to as the identity hypothesis), and has received considerable attention in second language acquisition research (Ellis, 1994). Study of the language produced by children learning an L1 and adults learning an L2 shows a number of similarities in the early stages of acquisition, particularly in syntactic structures, and, for L2, during informal usage. However, adult L2 learners have formal learning strategies available to them, as well as pre-existing L1 knowledge, so direct comparison of the acquisition processes is difficult. There have been quite divergent opinions, ranging from the notion that L2 acquisition uses domain general learning skills (Bley-Vroman, 1988) to the notion that first and second language learning is similar in natural situations (Ervin-Tripp, 1974). Overall, Ellis (1994, p. 109) concludes that “given the immense cognitive and affective differences between very young children and adults, the similarities in the language they produce are striking. However, there are also significant differences which have been shown to exist”.

With regard to visual word recognition and reading, there is a wealth of evidence indicating transfer effects occur between first and second languages (Durgunoglu and Hancin, 1992). This suggests that L2 acquisition is not a re-run of first language acquisition; it is not an acquisition process starting “from scratch”. The source of transfer effects in L2 acquisition is less obvious. They might be a consequence of learning strategies, whereby L1 is temporarily linked to L2 to help in the formation of L2 representations. MacWhinney and Bates (1989) take a view of L2 acquisition as a situation where L1 offers initial hypotheses about how L2 may be. These are subsequently supported (leading to facilitation) or invalidated (leading to inhibition) (MacWhinney, 1992). Alternatively, transfer effects could arise from the representations themselves, as L2 knowledge seeks to expand and build upon representations already established for L1. 

In sum, L2 acquisition has a good deal in common with the process of L1 acquisition, and generates a final lexical system similar to that produced by simultaneous bilingual acquisition. The additional knowledge and strategies available in the adult however make a direct comparison of second language acquisition and simultaneous acquisition difficult.

Summary of Part One.

We have looked at a number of sources of evidence in attempting to deduce the structure of the bilingual word recognition system. Neuropsychological evidence revealed no unambiguous support for anatomically separate representations for each language, although some cases of specific impairment of one of the languages were reported. The psycholinguistic evidence suggested a functional structure with independent lexical representations and a common semantic system. However, there were problems with this picture relating to certain kinds of words, and to how the access to the lexicons is controlled. Finally developmental evidence suggested that children can distinguish two languages from a very early age during bilingual language acquisition, although the implication for issues of representation is not clear. Second language acquisition appears to generate a similar end product to simultaneous acquisition in terms of the bilingual’s word recognition system. We will now turn to look at psychological models that have been put forward to account for the bilingual’s word recognition system.

Part Two: 

Models of Bilingual Lexical Representation.

Introduction.

The favoured model of the bilingual word recognition system will turn out to be a modified version of the Interactive Activation model, in which language is assigned an active role in accessing word representations. However, we will also encounter modified versions of the Serial Access and Verification models. In this chapter we will examine the key evidence that is used to distinguish between the various models (and between different modifications to each monolingual model). First we will look at the most parsimonious account, that the bilingual language system involves no new principles over and above the monolingual system.

Bilingual lexical representation = monolingual lexical representation.

Two quotes illustrate this position:

“Bilingual phenomena do not require any specific processes over and above those demanded by evidence involving monolingual research and observation.” Kirsner, Lalor, and Hird (1993) p. 215.

“There is no need to hypothesise any special anatomical structure or function in the brain of the bilingual as differentiated from the monolingual.” Paradis (1977) p. 114.

The weight of evidence reviewed in part one suggested that bilingual word recognition exhibits phenomena distinct from monolingual lexical representation. The issue at hand is whether these differences need necessarily imply any difference in underlying structure. The views which draw strong parallels between bilingual and monolingual lexical representation point to differences in the nature of the words comprising each of a bilingual’s languages as the source evidence for language specific processing.

These theorists suggest that where the words in a bilingual’s two languages have different characteristics, they will be processed differently; but that where their characteristics do not differ, they will be processed in a similar fashion. Thus Kirsner, Lalor, and Hird, suggest that morphology is pre-eminent in word identification, and that evidence of language specificity is essentially an artefact of morphological factors. The Kirsner et al point to evidence that morphologically similar words show transfer between languages, but dissimilar words do not (Cristoffanini, Kirsner, and Milech, 1986; Gerard and Scarborough, 1989). They comment: “morphology may be the critical feature for lexical organisation, providing the pegs around which clusters of words are organised, regardless of language” (p. 228).

Beauvillain (1992) also takes this view. She varied the orthographic properties of English and French words in a language inclusive lexical decision task (i.e. one where subjects had to respond YES if the stimulus was a word in either of the bilingual’s two languages). Words were chosen to reflect orthographic characteristics which were on the one hand specific to each language, or on the other, general to both. She found that words with specific orthography were recognised more quickly than those with general orthography. She also found that subjects took an equal amount of time to complete lists which included words in both languages as words in just one of the languages. Beauvillain proposed that words with general orthography produce more candidates in a single undifferentiated lexicon, and thus take longer to respond to. She concluded that “lexical representation in bilinguals is governed by orthography rather than by language... there is no language-selective access to a subset of lexical representations organised by language.” (p. 221).

However, while her results showed that mixed lists were not significantly slower than pure lists, nevertheless, in each of four conditions that were run, mixed lists were slower than pure lists (p. 229). If there were indeed no difference between the pure and mixed conditions, this is a 1 in 16 chance occurrence of spurious data (i.e. p=0.0625). This seems too close to statistical significance to warrant a strong claim on the matter. This is relevant because an earlier study by Grainger and Beauvillain (1987), also using French and English, did find that mixed lists were slower than pure lists. Moreover, the authors traced the extra time taken on mixed lists to those trials on which the subjects had to switch between languages.

Dalrymple-Alford (1985) also examined mixed lists with English and French bilinguals, on this occasion looking at reading times. He found longer times for mixed lists over pure, but noted that this difference disappeared when the mixed lists comprised pairs of translation equivalents. He proposed that transition costs in mixed lists merely reflect the different strengths of association between successive words in a list, and that associative links are stronger within languages than between them - with the exception of translation equivalents.

This view again suggests that language is not an a priori organisational principle of the lexical system. We may envisage Dalrymple-Alford’s claim more clearly using an analogy. Let us assume that the words in each of the bilingual’s languages are like a set of couples attending a party, held in a single room. The couples are equivalent to translation equivalent pairs. The male half of each pair corresponds to a word in one language, the female half to the same word in the other language. By the nature of the conversation at this party, boys are clustering together and girls are clustering together into two groups. Each guest however doesn’t want to stray too far from their partner, and thus will try and loiter closer to them, while remaining in the correct sex group. If the hostess wants to talk to each guest in turn, then she will take more time switching between groups than moving within a group, even though all guests are in the same room. However, the exception to this rule will be when the hostess moves between partners: since they stay close to each other, this will be quicker than moving between unrelated people from each group. We will return to this analogy in the next chapter, when we consider the distributed representations developed by a connectionist network. 

Paradis (1977) has raised similar doubts that we need to see two languages as being any more than two different registers or ways of speaking within a single language. One need not propose two lexicons and a task specific switching mechanism for, say, formal and informal modes of speech.

On the face of it, there is evidence from bilingual studies that appears difficult for the monolingual view to accommodate. There are three effects in particular. Firstly, we saw in Chapter 2 that a word’s recognition time is strongly determined by its frequency of occurrence. In part one of this chapter, we encountered words called non-cognate homographs, that have the same orthographic form in each language, but a different meaning, and as a consequence, often a different frequency. We saw that response times for these non-cognate homographs reflected their frequency in the current language context, not their overall frequency across both languages (French and Ohnesorge, 1995; Gerard and Scarborough, 1989). This finding would seem to show that language context strongly determines access time, given that a word does not change its morphological properties whatever language context it is presented in. Recall that it is morphological properties which Kirsner et al (1993) maintain account for apparent language differences.

The second finding relates to switch costs. Grainger and Beauvillain (1987) established that subjects incur a time cost in switching between languages in the lexical decision task (and we will see more evidence of this in Chapter 10). The weight of evidence indicates that in both naming and the lexical decision task, mixed language lists produce slower responses than pure language lists. Yet if language does not play a role in accessing representations, then there should be no difference between a pure and a mixed list: they both contain items from the same undifferentiated store.

Thirdly, Grainger and Dijkstra (1992) have found cross-language neighbourhood effects in English-French bilinguals. Words in English were rated for whether they had more orthographic neighbours in English than French (referred to as patriots), approximately an equal number of neighbours in each language (neutrals), or more orthographic neighbours in French (traitors). In an English lexical decision task, they found that subjects responded to patriots more quickly than neutrals, and neutrals more quickly than traitors.
 The point here is that if we take language out of the equation, and rely on morphology to organise the representations, then there is no difference between a patriot and a traitor. We should not expect inhibitory cross-language neighbourhood effects, yet they are found.

In sum, the monolingual approach is appealing in terms of parsimony, but cannot account for all the data. Yet there may be ways to extend this account. If we take the case of non-cognate homographs, which can be recognised slowly or quickly depending on language context, there is a parallel in monolingual language processing. Words which have both a verb meaning and a noun meaning but of different frequency (such as BOX, or WANT) can have their recognition times altered by the expected grammatical context. For example, if subjects expect nouns, WANT will take longer to recognise than if they expect verbs (Roydes and Osgood, 1972). If the monolingual approach could show how the recognition time for a lexical representation could be altered depending on context, then the same framework could account for monolingual and bilingual data by varying the nature of the context (i.e. between grammatical role and language membership). We will return to this idea in the final chapter of the thesis

Models of Bilingual Lexical Representation.

In this section, we will consider a range of bilingual models, which differ on two dimensions. The first is the basic form of representation assumed to underlie lexical representation. As in Chapter 2, we will see an Interactive Activation model, a Serial Search model, and a Verification model. Unlike in Chapter 2, we will not find a Distributed model. The second dimension will be the role that language plays in the representations. During recognition, the language of a word may crucially effect the way the dictionary is accessed; or the language of a word may be a piece of information stored along with its entry in the dictionary, becoming available only when the entry has been accessed. Grainger and Dijkstra (1992) called these alternatives, the “language network” and “language tag” hypotheses. In this section, we will follow their review of network and tag versions of each type of model. Of interest will be the evidence which they see as crucial in evaluating the models. First, however, we consider a set of more simple, descriptive models.

Descriptive models.

The first class of models form no more than descriptions of the various storage hypotheses. Several examples are shown in Figure 3.2. These pictures comprise nodes for one or two words, connected in a fashion determined by the relevant hypothesis. They are included in this review because they illustrate that often models have been specified no more rigorously than in the form of such pictures. Naturally problems arise with such theories. For example, in the diagrams taken from Kirsner, Smith, et al (1984), letter C is offered as a characterisation depicting “a single location shared by both bilingual representations of a word in a bilingual’s vocabulary” (p. 520). It is unclear what this means in terms of lexical access. For example, HORSE and PFERD apparently share the same “location”, but have quite different orthography. Any model of lexical access would thus require these words to have separate representations in the lexical system, on the basis that the sensory evidence to indicate the presence of either word would be quite different. In a search model, these two words would fall in separate “bins”. In a logogen or interactive activation model, they would be linked to separate sources of confirmatory evidence. As Grainger and Dijkstra (1992) comment, such translation equivalent pairs “... may have a common semantic representation but obligatorily must have distinct orthographic representations in memory that are involved in reading these words.” (p. 209, italics added).

Extensions to monolingual models.

Extensions to the Interactive Activation, Serial Search, and Activation Verification models have been proposed to account for lexical processing in bilinguals. Grainger and Dijkstra (1992) compared a hypothetical bilingual version of the Interactive Activation model with a version of the Serial Search model in addressing the question of how language information should be stored in the bilingual system. They suggested two hypotheses, the language tag hypothesis and the language network hypothesis:

· The language tag hypothesis postulates that each word unit stores a piece of information with it regarding its language of origin. This piece of information becomes available when the word is
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accessed. Thus we would read a word, and then we would realise that we had just read an English word. From the point of view of lexical access, the tag hypothesis sees language membership as epiphenomenal, in that it has no causal impact on processing.

· In the language network hypothesis, language information is represented in the system in the way the lexical representations are organised into two distinct “lexical networks” (p. 209). 

Grainger and Dijkstra evaluated the two versions (tag and network) of the two models (Serial Search and IA) according to three main empirical findings:

1. Grainger and Beauvillain (1987) found that subjects took longer to complete mixed lists of English and French words and nonwords in the lexical decision task than they did to complete lists in a single language. The extra time taken on mixed lists was traced to trials where subjects had to switch between languages. However, in an extra condition, Grainger and Beauvillain found that the presence of language specific orthographic characteristics eliminated the extra costs of mixed lists.

2. Grainger and Beauvillain (1988) found a similar effect in a semantic priming paradigm, where a prime word preceded a target word for lexical decision. They found that mixed language pairs were significantly slower than pure language pairs. Grainger and O’Regan (1992) have shown this effect to be quite resilient to practice.

3. As we saw earlier, Grainger and Dijkstra (1992) report findings indicating neighbourhood effects across language. In an English lexical decision task, English-French bilinguals responded to English words rated as patriots more quickly than to neutrals, which in turn were responded to more quickly than traitors. If a word in English had greater similarity to French words than to other English words, recognition was inhibited.

The language tag Bilingual Interactive Activation Model.

In the Interactive Activation framework, words are represented as localist detectors. In Grainger and Dijkstra’s (unimplemented) bilingual version of the Interactive Activation model, the word units are joined by an additional layer of language units. There is a single unit for each language. For an English-French bilingual, all words would be represented in a similar fashion at the word level, but French words would funnel activation up to the French language unit, and English words would funnel activation up to the English language unit.

In this model, one might expect to explain the language contexts effects (Grainger and Beauvillain, 1987) and language priming effects (Grainger and Beauvillain, 1988) in terms of pre-activation of one of the language units, based on the prior language context, or on the language on the previous trial. However, in the “tag” version of the model, the language units do not feed activation back to the word units, and so cannot differentiate their activity. This model essentially functions as an undifferentiated single store model. As a result, the notion of orthographic neighbours being classified as “patriots” or “traitors” also makes no sense. Grainger and Dijkstra thus judge the model as unable to account for any of their three key pieces of evidence.

The language network Bilingual Interactive Activation (BIA) Model.

This model is shown in Figure 3.3. It has the same structure as the tag version, except that now language units compete with each other, and can feed activation back to the words in their respective languages. The language units can directly raise the base rate activations of their respective sets of words, thus functionally differentiating the languages at the lexical level. It is now possible for input information feeding up to the language units, to focus the network’s search within a single language.

The ability of a language unit to raise the base rates of all the word units in that language can be used to account for the effects of language context and language priming. If one of the language units is pre-activated, it will facilitate words in a given language. When a switch of language occurs, the word units in the new language will be disadvantaged relative to the word units for the previously active language. As a consequence, the response will take longer, and a cost of switching language will arise. Grainger (1993) suggests that in the case of words with language specific orthography, no words will be activated in the old language, and so the speed of the switch to recognition in the new language will be maximised.

This model accounts for neighbourhood effects by the competition between English and French words, mediated by competition at the level of language units. For example, when recognising an English traitor (a word with more French neighbours than English neighbours), the French 
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neighbours will activate the French language unit, so that “in the initial stages of processing, the English node will be receiving inhibition from the French node, thus inhibiting the processing of the English target word.” (Grainger, 1993, p. 217).

This model accounts for all three of Grainger and Dijkstra’s empirical effects. The ability to functionally differentiate words at the lexical level thus seems important in meeting their criteria. Note however that such an ability is tantamount to an input switch
. In Figure 3.3, language units only appear to be able to facilitate words in their language. However, due to competition at the lexical level, this will result in inhibition for words in the other language. In principle, there is no reason why this inhibition shouldn’t entirely deactivate the other language, shutting down its recognition capacity altogether. Now in part one of this chapter, we saw that the evidence for such an input switch is very mixed. For instance, cross-language Stroop effects indicate that bilingual subjects cannot prevent themselves from semantically processing words in a context irrelevant language. So to account for such data, the model would have to set appropriate parameters for language-unit-to-word facilitation, and word-to-word inhibition. This of course implies an implemented computer simulation.

However, there may be a hitch here. Due to the way behaviour emerges from interactive networks, one cannot be entirely confident that an implemented bilingual interactive activation model will behave precisely as anticipated. In Chapter 2, we reviewed a problem with the original IA model in its theoretical extension to account for semantic priming. In that example, the word DOG was intended to prime recognition of the word CAT. Activation from the DOG unit was intended to go up to and come back down from, semantic units shared by DOG and CAT. However, it was pointed out that the anticipated effect of DOG on CAT would not necessary be facilitatory, since the two word units are in competition at the lexical level. Given that DOG is strongly activated by the visual input, it would be expected to win any competitions at the lexical level, and inhibit other words. The balance of indirect facilitation and direct inhibition is one that must be demonstrated in simulation, since “notional” accounts can go either way, and may be highly sensitive to parameter settings in the model. 

We can extend this thought experiment to the bilingual version of the IA model. For semantic units, now read language units. Imagine an English-French bilingual recognises a characteristically English word, such a COUGH. This will cause the English language unit to become very activated in comparison with the French language unit. This in turn will raise the base rate activation of all English word units. But these words units are in competition, and are trying to inhibit each other as well as the French words. The French words may well be inhibited, but what will be the net result for COUGH of its aggregated interaction with the English words that it is indirectly facilitating? The answer again is one that can only be resolved by running computer simulations. In the absence of such simulations, one must have reservations about claiming what an extended Interactive Activation model will or won’t do purely in theory.

The language tag Serial Search Model.

The next two models are based on the assumption that the underlying representations of words are list-like. In common with the language tag BIA model, the language tag Serial Search model is essentially an undifferentiated single store model. The words in both languages are seen as stored in a long list which is ordered by frequency. However, each word has a tag attached to it indicating its language of origin. This information becomes available when the word is accessed. Since language does not play a causal role in access, the model cannot account for the language context or language priming effects reported by Grainger and Dijkstra, other than as post-access effects. While the language specificity of a word may effect processing by determining the number of possible candidates (Beauvillain, 1992), there is no place in the model for competition between languages which might produce a patriot/traitor effect during lexical access. Grainger and Dijkstra consider this model an unlikely candidate.

The language network Serial Search Model.

The language network Serial Search model proposes that words are organised according to language, and within each language, are stored in a list in order of frequency. The model must now make a key decision during lexical access, of which language list to search first.
 One rule of thumb for the system would be to consult the language list of the previous trial, or of the previous language context. If the system makes the incorrect choice on the list to search, a time cost will result before the word is found in the other lexicon. This time cost will be minimised if the word has language specific orthography, since the incorrect lexicon will quickly be exhausted.

Thus this model accounts for both language context and language priming effects. However, in the language priming experiment, subjects always knew in advance that the target would be in a certain language. Why didn’t they use this information to search the correct lexicon first, so eliminating the cost?  This problem also arises with the cross-language neighbourhood effects. In this experiment, subjects knew all lexical decision would be performed in English, so the search should have been directed purely towards this language list. There is no place in this model for the presence of orthographic neighbours in the other language to influence list selection. The structure of this model thus implies a cleanness of language selection not found in the data.

The Bilingual Activation Verification Model.

Grainger (1993) introduced a further model to account for the three empirical findings outlined above, based on the hybrid view of the underlying representations in the lexical system. Grainger had a further concern, which was to establish that the notion of an input switch (as espoused by Kolers, 1966; Macnamara and Kushnir, 1971; Obler and Albert, 1978) was a faulty one. To do so he pointed to evidence against language selective access, such as evidence from the bilingual Stroop task. He suggested that in all lexical access, both lexicons are active to some extent. To illustrate this view, he introduced the Bilingual Activation Verification (BAV) model, shown in Figure 3.4. In the BAV model, the languages are represented in separate lexical systems. Given an input, the model performs a parallel search in each lexicon, and produces a candidate set for each language. Language context information then guides the verification process to the appropriate lexical system, and this cuts down the number of possible candidates. Candidates within a lexical system are then examined in order of frequency, highest first.

This model accounts for the language context effect as follows. The system starts verifying at the language of the previous trial. If the language has changed, then the verification has gone to the wrong candidate set, and the final response will be longer. However, in the case of orthographically specific words, the wrong lexicon will not produce any candidates, and so the delay will be reduced. This model suffers from the same limitations as the “network” Serial Search model, in that when the language of the target word is obvious in advance, no ambiguity  should arise about which candidate set to verify. Yet Grainger and Beauvillain (1988) established that if the prime was in the other language, recognition took longer.

With regard to the cross-language neighbourhood results, Grainger admits that a system which selects the language to verify purely according to prevailing language context cannot explain these results. He then suggests that the BAV model might be modified so that in the system “verification is initiated as a function of the relative activation levels in each lexicon. In this way, purely bottom-up information would direct the verification process.” (p. 21). The explanation of the empirical data is thus delegated to a control mechanism rather than to the structure of the model itself.

Other models.

French and Ohnesorge (1995, 1996) have also compared the merits of serial search and interactive activation architectures for modelling bilingual lexical representation. Their research focuses on how French-English bilinguals recognise non-cognate homographs (which they refer to as inter-lexical homographs), such as FIN and RIDE, which mean “end” and “wrinkle” respectively in French. In one study they compared lexical decision response times for unbalanced non-cognate homographs, which had a higher frequency meaning in one or other language (French and Ohnesorge, 1995). They found that response times depended on the language context of response - whether the experimental block contained items in a single language or both languages. These findings replicated results found by Gerard and Scarborough (1989). In a second study, they compared response times for nonwords which had a higher orthographic neighbourhood density in one or other language (French and Ohnesorge, 1996). If we might refer to a nonword with a much higher neighbourhood density in English than French as an Englishy nonword, and one with a much higher neighbourhood density in French than English as a Frenchy nonword, then French and Ohnesorge found the following result. In a condition involving lexical decisions in French only, subjects rejected Englishy nonwords faster than they did Frenchy nonwords. In a mixed language condition, subjects took approximately an equal time to reject Frenchy and Englishy nonwords. Moreover, the time taken in the mixed condition was approximately equal to the time taken to reject Frenchy nonwords in the French only condition.

French and Ohnesorge compared the ability of two types of model to account for these data. Their first model was based on the serial search metaphor, and postulated two independent word lists, one for each language. Two search demons were hypothesised to work through each list in parallel on presentation of a stimulus. French and Ohnesorge suggest however, that the speed of the each demon’s search would depend on the activity of each language; that is, in an all French condition, the English search demon would work through its list quite slowly. They claim that such a model could account for the within language frequency response of non-cognate homographs, but could not account for the nonword data. However, a verification version of the parallel serial search model could probably account for the nonword data. Englishy nonwords would be rejected more quickly in the French only condition since the system focuses its response on the French lexicon, and this lexicon produces no candidate list to verify for Englishy nonwords.

It is worth noting that in French and Ohnesorge’s parallel search model, there is a novel mixture of the serial search and direct access metaphors. In traditional search models, recognition time typically depends on the number of lexical entries that must be checked before the correct one is found. In the French and Ohnesorge version, we see a search demon that has an “activation level” like that of word units in the direct access account. This activation level now mediates the speed of each demon’s search through the word lists. Response times are now seen as determined not only by number-of-entries-checked, and but also how quickly the search demon is doing the checking.

French and Ohnesorge then consider a version of Grainger and Dijkstra’s (1992) “language network” bilingual interactive activation model. They propose a modification to this model, in that non-cognate homographs would have only a single word unit in the network. This unit would have two portions, one representing its recognition in each language. The two different interpretations of the non-cognate homograph (e.g. FIN as corresponding to “end” in French, or to the pointy thing on a shark’s back in English) would compete; but this competition would be mediated ‘from above’ by the activation of the language units. This view is in contrast to that of Grainger and Dijkstra, who suggested that non-cognate homographs would have a separate unit for each language, and that during processing, “the inappropriate reading [would be] suppressed. This suppression can be described in terms of language nodes actively inhibiting inappropriate word-level nodes within the BIA framework” (p. 218). French and Ohnesorge claim that their version of the BIA model is able to account for the data from both their studies, and thus prefer it to the parallel serial search model. However, once more, no simulations are offered to support the claims made for the BIA model.

French and Ohnesorge’s motivation for suggesting a single word unit for non-cognate homographs is by analogy to ambiguous words in monolingual word recognition. There is evidence that in a single language, both meanings of an ambiguous word are initially available during recognition, and that the context irrelevant meaning is then suppressed (e.g. Simpson and Burgess, 1985). Beauvillain and Grainger (1987) claimed to have found a similar effect for non-cognate homographs. In a cross-language priming study, they found that the meaning of the non-cognate homograph inappropriate to the language context was nevertheless available to prime a target word. At longer SOAs this priming effect disappeared, implying that the inappropriate meaning had been suppressed
. Following the analogy with ambiguous monolingual words, French and Ohnesorge propose that the interpretations of non-cognate homographs compete. One interpretation of the non-cognate homograph eventually wins out, with the outcome being determined by the relative base rate activation of each half of the same unit, and the biasing of the language units.

Given that the word unit for the non-cognate homograph must have two halves and that these halves must have independent base rate activations, it is not clear what is to be gained in this model by claiming that there is a single unit for a word like FIN. Nevertheless, once again we see non-cognate homographs identified as central to understanding bilingual lexical representation, and once again we see them apportioned a special representational status.

The BIA model proposed by Grainger and Dijkstra model allows top-down activations to differentiate the activity of the words in each language. This “activation” view of language differentiation has been used elsewhere, predominantly in bilingual language production models (De Bot, 1992; De Bot and Schreuder, 1993; Green, 1986). An appropriate word is selected during production by having its activation raised above threshold through stimulation arriving from semantic and grammatical sources. Whole languages may have their base rate activations raised or lowered by a central controlling device or “specifier” (Green, 1986). In this way, a voluntary output switch determines the language of production. It is malfunction of this specifier that Green and Paradis (1996) have to used to account for the specific impairment / selective inhibition of languages after brain damage. While a whole language may be de-activated, under normal conditions a word in the currently non-active language may still be produced if it is appropriate enough (i.e. receives strong enough activation from semantics). Thus this system permits linguistic flexibility and semantically driven code-switching while still implementing overall language control.

Klein and Doctor (1992) have also proposed a Bilingual Verification model in visual word recognition, which again has separate representations for each language. Processing occurs in parallel for each language, and for the lexical decision data that the model accounts for, there is competition at response from each language system. Klein and Doctor also include a separate phonological route for processing in order to account for an inhibitory cross-language homophone effect they discovered when testing English and Afrikaans subjects.

Paivio and Desrochers (1980) have proposed a bilingual word recognition model based on Paivio’s dual coding theory (Paivio, 1978). In dual coding theory, there are separate but linked verbal and image logogens. In the bilingual model, two sets of verbal logogens are proposed. Interactions between the languages occur via the common image system, except for translation equivalents, which again have a special status in that their word logogens are directly linked. Paivio and Desrochers suggest that the presence of switch mechanisms means that “one language system can be used in comprehension, memory, or production without necessarily being dependent on or influenced by the other.” (p. 392).

Conclusions.

We have seen several models of bilingual lexical representation. These have employed 3 of the 4 basic forms of representation taken to underlie lexical representation: serial search, interactive activation, and hybrid/verification. The key question researchers asked in designing these bilingual models is whether language plays a functional role in accessing the lexical representations. Their conclusion was that to account for (selected) empirical data, language information must play a functional role in accessing word representations. We noted that the presence of functional differentiation between the language representations can be interpreted as equivalent to at least a partial input switch, and that the empirical support for such an input switch is very mixed.

In comparing forms of underlying representation, both Grainger and Dijkstra (1992) and French and Ohnesorge (1995, 1996) claimed a preference for a bilingual version of the Interactive Activation (BIA) model. In neither case were computer simulations offered to support the claims made for the BIA model, and it was noted that predictions concerning the behaviour of a modified version of the IA model may not be entirely valid.

Models were evaluated according to their ability to explain the following selected empirical data:

1. The within language frequency behaviour of non-cognate homographs such as FIN (Gerard and Scarborough, 1989; French and Ohnesorge, 1995)

2. Cross-linguistic neighbourhood effects (Grainger and Dijkstra, 1992; French and Ohnesorge, 1996).

3. Control effects, whereby bilinguals appear to take time to switch between accessing their two languages (Grainger and Beauvillain, 1987; Grainger and Beauvillain, 1988; Grainger and O’Regan, 1992).

Lastly we should note that these models are predominantly extensions to monolingual models. As such they inherit the blindspot of monolingual models to accommodating a story of acquisition, of how the bilingual lexicon or lexicons may have come about.

We have seen 3 out of the 4 representational formats extended to the bilingual case. It still remains, therefore, to consider how we might extend a distributed model of lexical representation to the bilingual case. What role will language play in organising the representations in such a model? This will be the concern of the next chapter.

Chapter Four.

Could we account for bilingual lexical representation with a distributed network model?
Three hypotheses.

In this chapter, we will consider how we may extend a distributed model of monolingual lexical representation to the bilingual case. We will take as our basis the Seidenberg and McClelland (1989) / Plaut et al (1996) framework, and consider three hypotheses for extending the framework to incorporate a second language.

The No Change model.

The first possibility is that we make no change to the framework at all, but consider that it is simply trained to produce the relevant orthographic, phonological, and semantic codes for twice as many words. We will call this the No Change (NC) model. Unfortunately, this model doesn’t get very far out of the starting blocks. It encounters the same problems that faced the bilingual=monolingual account in the previous chapter. Firstly, the NC model cannot account for the cost of switching between languages that causes mixed language lists to take longer than pure lists, in the lexical decision task and naming. Secondly, the NC model cannot account for the inhibitory cross-language effects of orthographic neighbourhood. Thirdly, the NC model cannot account for the within language frequency response of non-cognate homographs. Indeed, a network that maps between orthography and semantics cannot learn two different outputs for the same input, so in principle the NC model will be unable to learn the different meanings of non-cognate homographs in each language. (Of course, it has yet to be shown how the Seidenberg and McClelland framework will learn to retrieve the correct meaning for ambiguous words in a single language. We will return to this point in the final chapter). In short, simply expanding the training set of the monolingual model will not account for the empirical data on bilingual word recognition.

The Bilingual Single Network model.

The second possibility we will call the Bilingual Single Network (BSN) model. This model is little different from the No Change model, except that language information is explicitly stored with each word, as part of the orthographic, phonological, and semantic codes. Otherwise, the framework is the same as that proposed by Seidenberg and McClelland. This model has the advantage of parsimony, in that no additional structure is added to account for the bilingual case, merely additional information. The BSN model is illustrated in Figure 4.1a).

The Bilingual Independent Networks model.

The third model we will call the Bilingual Independent Networks (BIN) model. In this model, the empirical evidence pointing toward the independence of lexical information is taken literally. We will now postulate that the mappings which the model must learn between the various codes will be computed over separate representational resources: there will be one bank of hidden units for one language, and a separate bank for the other language. The BIN model is illustrated in Figure 4.1b).

Figure 4.1:   a) The Bilingual Single Network Model for word recognition and naming, assuming single banks of hidden units are responsible for performing the mappings for both languages. (For clarity, some of the interactive connections from the original Seidenberg and McClelland framework have been omitted.)
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Figure 4.1:  b) The Bilingual Independent Networks Model for word recognition and naming, assuming separate banks of hidden units are responsible for performing the mappings for each language. (For clarity, some of the interactive connections from the original Seidenberg and McClelland framework have been omitted.)
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The BSN model versus the BIN model.

The rest of this thesis will constitute an evaluation of the respective claims of the BSN and BIN models. In the rest of this chapter, firstly we will make some clarifications about the BSN / BIN distinction. Then we will look at how the developmental evidence might constrain our choice of model. Finally we will examine a ‘toy’ connectionist simulation to get an idea of the implications of storing two sets of words in a single set of distributed representations. Thereafter, Chapters 5-8 will constitute our investigation of the BSN model, Chapters 9-10 our investigation of the BIN model, and Chapter 11 an evaluation of the outcome.

In comparing the two models, we encounter a familiar concern: What functional role does language play in the lexical representations? But the question is now more subtle. Both the BSN and the BIN models postulate that language information is stored in the model, but they differ as to the form it takes. In the BSN case, the language information is an extension to the input and output vectors for the mapping of a given word. However, we will shortly see that this information plays a more active role than in Grainger and Dijkstra’s language “tag” hypothesis. In the BIN case, language information is built into the structure of the word recognition system. This is equivalent to Grainger and Dijkstra’s language “network” hypothesis.

The relevant questions for the BSN model will revolve around representation. Will this model have the resources to account for the range of empirical evidence which suggests that the lexical representations for each language are independent? If the mappings for both languages are stored in a single network, won’t they interact, or interfere with each other?

The relevant questions for the BIN model will revolve around control. How will  the activities of the two language-specific sub-systems be co-ordinated in the functioning of the overall system? What happens when the separate networks compete over processing an input? What happens when they co-operate? Can one network be suppressed in a given context in favour of the other, or do both networks always process the input in parallel?

A note concerning levels of description.

The BIN model has separate representational resources to store each language. Is this a functional or an anatomical distinction? Within connectionist modelling, there is often an equivocation on this point: a functional model could be implemented in all sorts of ways, yet a connectionist model embodies characteristics of neural processing, and so would seem to be making some (limited) claims about its implementation. If we claim that the BIN model is merely functional, this leaves open the option that it could be implemented in a single piece of neural substrate, which, frankly, would confuse matters! However, under our neural metaphor, we will assume that the implementation of the BIN in the neural substrate resembles our simulations in some very broad respects. If the brain were to use undifferentiated substrate to implement separate representational resources, our later simulations of the BSN model suggest that it could not show the strict functional independence required of the functional BIN model. Our position on the ‘level’ of the BIN model will be as follows. If some way exists of implementing the BIN model in a single piece of neural substrate such that it shows only those characteristics of the BIN model and none of the BSN model, then the BIN model is a functional one
. If not, its assumptions of separate architecture will also be anatomical ones.

With regard to the BSN model, the question is whether an implementation which involved separate pieces of neural substrate for each language could produce a functional structure of the single network model. Chapters 9 and 10 have to address a similar problem, since later in this chapter we will find prima facie evidence that supports the BSN model. To survive, the BIN model must offer an account of how this evidence might arise, from a system employing separate representations (although these are now functionally separate!). Our position for the BSN is as follows: If some way exists of implementing the BSN model in separate pieces of neural substrate such that in all respects, it shows the functions of the BSN model, then the BSN model is a functional one; otherwise it carries anatomical implications.

In short, the single network / separate network distinction is probably, but not necessarily, an anatomical one.

A note concerning visual versus auditory word recognition, and comprehension versus production.

In the following simulations, we will predominantly be looking at networks which map between orthography and semantics. This is so we can match the performance of the model against the empirical data on visual word recognition. In some discussions, such as the development of two languages in children, it is much more appropriate to think in terms of the part of the word recognition framework which maps between phonology and semantics. Children learn to understand spoken language before they learn to read. However, at the specificity of modelling used in this thesis, the representational arguments will be general to both.

To illustrate this point, the simulations in this chapter, and those used in Chapters 6 and 7, employ three letter words as input. The models use a bank of units to represent the first letter, a bank of units to represent the second letter, and a bank of units to represent the last letter. Three units, one from each bank, represents a ‘visual’ word. This scheme is almost identical to that used by Bullinaria (1995b) and Plaut et al (1996) to represent the phonology of monosyllabic words. In those cases, the first bank of units represents onset consonant clusters, the second vowel clusters, and the third, offset consonant clusters. Once more, three units, one from each bank, represent a word. Thus the BSN / BIN distinction is intended to generalise between visual and auditory word recognition. In detail, these accounts must be different, but we have yet to reach that level of detail.

Our focus will primarily be on comprehension rather than production. In this project we will assume that these functions are subserved in the main by different systems (e.g. see Ellis and Young, 1996, chapters 5 and 6). We will make no claim that the architecture of comprehension and production systems must be isomorphic. In terms of production, bilinguals must necessarily toggle between languages - only one set of sounds can be produced by the speech apparatus at once. In comprehension, such an absolute toggle may not be required. It could be that the comprehension and production systems are structured differently to reflect different demands. Our interest will be in modelling the comprehension system (although we may refer to production where it is appropriate). But it may be that the BSN / BIN question has different answers for comprehension and production.

The constraints of developmental evidence.

In this section, we consider whether developmental evidence will constrain the appropriate distributed model. The developmental evidence turns out to be problematic for both the BSN and BIN models, but in different ways. First let us consider simultaneous acquisition. In terms of an infant learning two languages, as we have suggested, the appropriate part of the word recognition framework involves the development of mappings between phonology and semantics.

The BSN model can handle simultaneous acquisition straightforwardly. Its training set comprises types and tokens of two languages, and a single network can adjust its weight matrix to perform both sets of mappings. We will assume that semantic development is autonomous. The system must develop phonological representations of the two languages and then learn the mappings to a single set of meanings. Self-organising or competitive networks demonstrate how a neural network can develop representations of a data set just via exposure to that data set (Kohonen, 1982).  It is plausible that a self-organising network exposed to a data set clustering around two regularities (i.e. the phonetics of two languages) will develop distinguishable representations for those separate languages. That is, the child will be able to distinguish between the two languages in the environment, such that the languages may be tagged. Additionally, separate context of usage will help to index the languages, and later, meta-cognitive knowledge of the child’s possession of two languages. Thus the system learns the relation between words and their meanings in a single network.

On the other hand, the BIN model has to find a justification for the word recognition system splitting into two sub-systems. We saw in the review in Chapter 3 that the child shows awareness of two languages from a very early age, as young as 2. While there was evidence of early and then declining rates of language mixing, this did not point to the presence of a stage of lexical re-organisation. Instead it was the result of initial ignorance of the sociolinguistic rules for using two languages. If the child has awareness of the two languages early on, in the BIN model, this must imply an early commitment to a bipartite language system. Such an early commitment is risky: it wouldn’t do for the child to commit to separate lexical sub-systems merely on the basis that its parents had different regional accents. If the separation does not occur at this early stage, what triggers it? Vihman (1985) reported that meta-cognitive awareness of bilingualism did not appear in her child until 4 years of age, long after language mixing rates had dropped off. In short it is not clear how the BIN model can motivate its independent representations during simultaneous acquisition. We will return to this point, and consider a possible solution, in Chapter 11.

The BIN model has no such problems during second language acquisition. The language learner is entirely aware that they are learning a new language, and so is in a position to put aside new representational resources to learn it (however this may be done). While the evidence in Chapter 3 suggested that L2 acquisition was not identical to L1 acquisition, the BIN model can explain transfer effects by pointing to strategies that the language learner may use to train up their ‘virgin’ L2 network. Unsurprisingly, this may initially involve their L1 where it is useful, thus producing apparent transfer effects from L1 to L2.

However, on the face of it, the BSN model has problems with such sequential acquisition of languages. A network taught by a gradient descent algorithm to learn one set of input-output mappings and which is then taught a new, second set of mappings, can display massive retroactive interference - so that the new learning effectively destroys the old. This is known as Catastrophic Interference (McCloskey and Cohen, 1989; Ratcliff, 1990) and arises because of the overlap of representations in the hidden layer. Even a monolingual network model must account for how the vocabulary of a single language can be expanded without new knowledge interfering with old knowledge. But the acquisition of a whole new language is a much bigger proposition. In terms of second language acquisition, there is a risk that the second language will ‘over-write’ the first. Yet in Chapter 3, we saw that soon after L2 acquisition has begun, the functional structure of the lexical system begins to resemble that of the simultaneous bilingual. Somehow, within a single network, a new set of mappings must be integrated into the existing set without significant disruption. We will address the issue of catastrophic interference in some detail in Chapter 11, where we will suggest that the BSN model may be able to overcome this problem.

In conclusion, when we apply the constraints of development to the BSN and BIN models, both are found wanting: the BSN model with second language acquisition, the BIN model with simultaneous acquisition. Neither model is unambiguously supported, and both must tackle problems if they are to triumph as the preferred characterisation of the bilingual word recognition system.

An illustration of the implications of storing two sets of mappings in a single feedforward network.

In this section, we will take an early look at the plausibility of the BSN model. We will use a simple connectionist model to explore the kinds of representations we might expect to develop when we try to store two languages in a single network. The results will show that the mappings for each language do indeed interfere, but only under certain conditions. These conditions are when mappings exhibit between language similarity. In the last section of this chapter, we will list a wide range of between language similarity effects that have been reported in the bilingual literature, and which might be taken as support for the notion that the BSN model of lexical representation is an appropriate one.

In this simulation, we will train a feedforward network to learn the words in two ‘mini-languages’, each comprising 12 items. We will then ‘look inside’ the network to see what sort of representations it has formed. In this simulation, we will address three points: 

1. How does the similarity between different words affect the way in which a network represents those words?

2. How does the inclusion of language information affect the nature of the representations formed?

3. How does the type of mapping required of words affect the representations formed?

1. The Word Similarity simulation.

The Training Set.

The network was set the task of learning two sets of three letter words. The words could have any of 9 letters in the first position, any of 4 letters in the second position, and any of 4 letters in the third position. The words in each group are shown in Table 4.1. Language One was characterised by a predominant regularity: 8 of the 12 words ended in the letters OG. However, 4 of the 12 words did not conform to this regularity (these words are starred in Table 4.1). Language Two was characterised by a different predominant regularity: 8 of the 12 words ended in the letters AY. Again, 4 of the 12 words did not conform to this regularity (also starred in Table 4.1). These mini-languages are intended to depict some very abstracted qualities of the lexical items in languages such as French and English, which share the same orthography, but which are loosely differentiated by predominant orthographic regularities.

Table 4.1: Mini ‘languages’ used in the word similarity simulation.
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The Network.

The network had 25 input units, 5 hidden units, and 25 output units. The architecture is shown in Figure 4.2. Each set of 25 units comprised the 17 units representing the letters of each word (9+4+4), and two sets of four units referred to as Bases. These Bases will become relevant in the next two simulations, but were not employed in the Word Similarity condition.

The network was trained using the back propagation algorithm to reproduce the input pattern on the output units. This was the technique used by Seidenberg and McClelland (1989) to develop orthographic representations for use in the lexical decision task. Since the network had only 5 hidden units to represent 24 words, it could not use a single hidden unit to represent each word, and therefore had to develop distributed representations which captured the features of the words it had to learn. The network weights were initially randomised between (0.5, and it was then trained for 5000 epochs with a learning rate of 0.05 and momentum of 0. At this point the global error score for the network was no longer significantly decreasing, and all units were within 0.2 of their target activations. In the following simulations, the results are reported for a single network. Results could not be averaged over multiple networks, since when one ‘looks inside’ a network, the solutions vary across networks. However, all the characteristics of the solutions reported below were similar over a number of simulations. The tightness of the clusterings of representations changes according to the amount of training the network has had on the words, but again, the broad pattern was similar at different points during training.

[image: image28.emf]Priming in the Orthographic Autoassociation Network

using Weight Change (250 epochs, 5 hidden units, learning rate = 0.5)
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Figure 4.2: Network architecture for the word similarity simulation.

Results.

When the network had learned to reproduce the words, its hidden unit representations were examined. The distributed representation for each word had 5 values, corresponding to the activation on the five hidden units. However, by examining these activations for all the words, we may derive the most important dimensions across which the representations vary. These are called the Principal Components. The first two principal components of the hidden unit activations for each word in the trained network are plotted in Figure 4.3.

The distance between any two words on this diagram corresponds to how similarly the network treats these words. It is also an indication of the potential for interference between the representations of these two words. This interference may be due to noise or, as we shall see in the next chapter, due to priming. In some respects, the distance between representations in the similarity space of the hidden units can be seen as a measure of the independence of the representations, a point that we shall explore later.

We may note the following points from Fig. 4.3. The network developed representations for the words according to their orthographic similarity. Similar words cluster close together, so that the OGs of Language One and the AYs of Language Two form separate clusters. This view of representation, as guided by the organisational principles of orthographic similarity, is consistent with that proposed by Beauvillain (1992) and Kirsner, Lalor, and Hird (1993) for bilingual lexical representation. It is also suggestive of the idea of two sets of friends clustering into separate groups in a single room, which we referred to in the context of Dalrymple-Alford’s (1985) proposals on bilingual representation.

Note however that while we know that the words originate from two “languages”, the network was given no such information. The words from the two languages were separated by predominant regularities. In this case, word similarity was sufficient to separate the languages. However, in each language there were exception words which did not accord to the regularities. These could be coincidentally more similar to words in the other language than their own. For these words, their position in representational space frequently fell in amongst the representations of the other language (e.g. SET, FOG, and BAT in Fig. 4.3).

In sum, this simulation shows us that representations can be separated within a single network, but only so long as the languages are orthographically dissimilar. Where similarity breaks down, then separation disappears.

Figure 4.3: Principal Components Analysis of the hidden unit representations for the Word Similarity Condition

[image: image29.emf]Priming in the Orthographic Autoassociation Network

using Weight Change (10 hidden units, 250 epochs, learning rate = 0.5)
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2. The Language Information simulation.

The Training set.

In the previous simulation, the network was trained to reproduce word information alone. In this simulation, we will attach some information to each word, to tell the network which language it belongs to.

Two bases, A and B, were defined, each comprising 4 units. Base A was attached to Language One words at input and output. Base B was attached to Language Two words at input and output. When a Base was attached to a word, all four of its units were activated. Thus if Base A was attached to the input for DOG, the overall input vector would have 7 units active and 19 inactive. The active units would be those for a D in position 1, an O in position 2, a G in position 3, and the 4 units representing Base A. Each base comprised 4 units to ensure that base information was at least as salient to the network as word information.

The bases allow us to tell the network that whatever the orthographic structure of each word, these words originate from two different languages. The network had the same architecture as that used in the previous condition, and used the same initial weights. It was again trained for 5000 epochs, with a learning rate of 0.05 and a momentum of 0. 

Results.

Figure 4.4 shows the first two principal components of the hidden unit representations for this network. Again the results show that words were mainly stored according to similarity. The OG words cluster together and AY words cluster together. Notice also that the language information now pulled the representations apart into two separate sets, strictly according to language. While a Language Two word like FOP is more similar to the Language One word FOG than other members of its own language it is nevertheless clearly part of the separate Language Two representations. However, its position in that group is close to the word FOG in the Language One representations. Word similarity thus also played a role forming the representations.

This condition demonstrates that language information supplied with the word codings can play a causal role in developing the internal representations of a distributed network. It thus accords with Grainger and Dijkstra’s (1992) preferred language “network” hypothesis. However, note that language information combined with word similarity information in forming the representations, rather than replacing it as an organisation principle.

3. The Mapping Similarity simulation.

The Training Set.

So far, we have only trained the network to reproduce (or “autoassociate”) its input vector. This means that input vectors have had the same similarity relations as output vectors. As a result we cannot tell whether the similarity patterns found in the hidden representations were caused by similarity between vectors at the input, similarity between vectors at the output, or a combination of both.

In this condition, the base for each word at input and output was allowed to vary. The bases still identified the words at the input - all Language One words were associated with Base A, all Language Two words were associated with Base B. However, half of each language had the same base at output (i.e. A ( A, B ( B), and half changed their base from input to output (i.e. A ( B, B ( A). Each word was thus associated with one of two types of mapping: either an autoassociation or a transformation. The respective base mappings for each word are included in Table 4.1. We might put forward three hypotheses about the factors that determine the nature of the hidden unit representations.

i) If the nature of the hidden unit representations is determined by the similarity of the input patterns alone, there should be no difference in the representations between this and the previous condition: at input, the base of a word identifies its language, and we should expect language clusters.

ii) If the nature of the hidden unit representations is determined by the similarity of the output patterns alone, we would expect a new bipartite division of the hidden unit representations depending on whether the output base is A or B. This would cut across our previous definition of language membership.

iii) Finally, if the nature of the mapping between input and output determines the hidden unit representation, we should expect words associated with transformations to be treated differently than those associated with autoassociations. Given two types of input base (A and B), and two types of output base (A and B), we might expect a division of the representations into four sections.

The network was trained under the same conditions as the previous simulations. 

Figure 4.4: Principal Components Analysis of the hidden unit representations for the Language Information condition.

[image: image30.emf]Priming in the Orthographic Autoassociation Network

using Weight Change (15 hidden units, 250 epochs, learning rate = 0.5)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

  

Word-Word               Nonword-Nonword           Word-Nonword            Nonword-Word

 

Priming Type (Prime-Target)

Priming (RMS Error)

Priming by Same String

Priming by Strings 1 letter different

Priming by Strings 2 letters different

Priming by Strings 3 letters different


Figure 4.5: Principal Components Analysis of the hidden unit representations for the Mapping Similarity condition.
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Results.

Figure 4.5 shows a plot of the first two principal components of the hidden unit representations for the network in the Mapping condition. The results of this condition are more complicated. However, the pattern becomes easier to understand if we consider only the regular OG and AY words (those with solid circles in Fig. 4.5). The regular words are still split into their languages. However, each language group is split into those words associated with transformation mappings and those words associated with autoassociation mappings. The basic pattern of the hidden unit representations is thus one of quadrants. The autoassociation mappings are at opposite quadrants. This is because these mappings are maximally dissimilar for the words in each language (A ( A versus B ( B). The irregular words however escape this tidy partitioning. An idealised version of this scheme is shown in Figure 4.6.

The results of this simulation show that the type of mapping associated with each word will also determine the nature of its hidden unit representation. Words associated with similar mappings will have more similar internal representations. However, once more, this is a soft constraint, which interacts with word similarity and language information at input, in defining the nature of the representations.


Figure 4.6: Idealised organisation of the internal representations for the 
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Mapping Similarity condition.

[image: image33.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hidden units, 100 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image34.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hidden units, 250 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image35.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hidden units, 750 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image36.emf]Priming in the Semantic Network using Weight Change. 

(2-layer net, 100 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image37.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 8 hidden units, 100 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image38.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hidden units, 100 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image39.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 24 hidden units, 100 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image40.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hidden units, 100 epochs, lrate 0.5, sparseness 10% of 40).
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[image: image41.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hiddens, 100 epochs, lrate 0.5, sparseness 5% of 60).
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[image: image42.emf]Priming in the Semantic Network using Weight Change. 

(3-layer net, 16 hiddens, 100 epochs, lrate 0.5, sparseness 3% of 100).
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              Error Rate

Stimulus Type

ExampleRepetition TypePrimeTarget

1st Presentation2st PresentationDiff <1st - 2nd>

Non-Cognate Homographs

MAINWithin languageEnglishEnglish43%23%20%

Between languageEnglishFrench30%28%2%

Between languageFrenchEnglish28%39%-12%

Within languageFrenchFrench26%30%-4%

English Singles

RAINWithin languageEnglishEnglish28%26%2%

Between languageEnglishFrench32%37%-5%

Between languageFrenchEnglish41%30%11%

Within languageFrenchFrench45%35%10%

French Singles

BAINWithin languageEnglishEnglish25%21%4%

Between languageEnglishFrench23%24%-2%

Between languageFrenchEnglish40%42%-2%

Within languageFrenchFrench24%30%-6%

Nonwords

SAREWithin languageEnglishEnglish26%13%13%

Between languageEnglishFrench20%29%-9%

Between languageFrenchEnglish25%22%3%

Within languageFrenchFrench18%20%-2%

Note.

Each cell represents the mean error rate averaged over 8 subjects in that condition.
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Conclusion.

In this simple model, we have seen how a feedforward network, representing two groups of words in a single set of distributed representations, developed those representations according to the principles of orthographic similarity, language information, and similarity in type of mapping. If we take this as the basis for a model of bilingual lexical representation, such a model would combine prior theoretical views that morphological similarity determines lexical representations in bilinguals (Beauvillain, 1992; Kirsner, Lalor, and Hird, 1993) and that language information determines lexical representations in bilinguals (Grainger and Dijkstra, 1992). The Bilingual Single Network approach thus offers the potential to combine the most parsimonious approach (which holds that bilingual lexical representation is like monolingual representation) with the most frequent element of bilingual models (that language plays a functional role in determining lexical representations).

The BSN model might also offer us other benefits. Within a single set of distributed representations, the nature of the representation of a given word is sensitive to its between language properties. Words may be treated more similarly by the network on the basis that they have a similar form, that they come from the same language, or that they are associated with the same sort of mapping. If the representations for two words are more similar, then an operation that effects one representation (such as extra training on the network) will be more likely to affect the other representation. Greater similarity can thus be seen as less independence.

This interpretation of lexical representation might explain why in certain circumstances, cognates, non-cognate homographs, homophones, and translation equivalents appear to exhibit less language specific behaviour than words with no between language similarity. Some theorists have suggested special representational formats for these word groups. However specifying a single representational format for all word types would seem a more parsimonious approach. For example, with regard to the apparent special status of cognates compared to non-cognates, Green (1993) comments: “It would be more parsimonious to have a single format. Indeed... it seems unmotivated to create a dichotomy out of a dimension of similarity. Cognates share more in common than non-cognates.” (p. 258). Similarity varies on a continuum, and a distributed network has the representational resources to reflect such a continuum.

A summary of empirical evidence for between language similarity effects.

We have suggested that between language similarity effects may arise from the interaction of language representations within a single distributed network. Later in this thesis we will investigate the hypothesis that for the BIN model, such similarity effects could arise from the control processes operating over independent lexicons. Similarity effects, then, will play a central role in evaluating the adequacy of each model. In order to make the nature of these similarity effects clear, we will summarise them below. They are split into 5 sections, reflecting whether the similarity would appear at input or output in terms of the Seidenberg and McClelland framework. These sections are:

1. Similarity effects at Input: Orthographic.

2. Similarity effects at Output: Phonological.

3. Similarity effects at Output: Semantic.

4. Similarity effects at Input and Output: Orthographic and Semantic.

5. Similarity effects in Control.

Each study is classified as demonstrating a facilitatory or an inhibitory between language effect. However, the key point to note in each case is that an item in Language A behaves differently from its compatriots by virtue of the existence of an item in Language B, (be it a fellow cognate, homograph, homophone, or translation equivalent).

1. Similarity Effects at Input: Orthographic.

· Gerard and Scarborough (1989), using Spanish-English bilinguals in a blocked lexical decision task, found between language priming at long lags both for cognate and non-cognate homographs, but not for non-cognate translation equivalents in each language (facilitatory).

· Using a language inclusive lexical decision task with English-Afrikaans bilinguals, Klein and Doctor (1992) showed that non-cognate homographs were responded to more slowly than comparable frequency cognate homographs (inhibitory).

· Using a language inclusive lexical decision task with French-English bilinguals, French and Ohnesorge (1995) showed that in a mixed language context, non-cognate homographs were responded to according to their highest frequency reading in either language (facilitatory).

· In a language inclusive lexical decision task with Serbo-Croats, Lukatela, Savic, Gligorijevic, Ognjenovic, and Turvey (1978) found that for script ambiguous words, that is, words which had a different reading either in Cyrillic or Roman script, subjects responded more slowly (inhibitory).

· When Grainger and Dijkstra (1992) asked English-French bilinguals to perform a lexical decision task in English, they found that English words which had more orthographic neighbours in French were responded to more slowly than those that had more orthographic neighbours in English (inhibitory).

· Using French-English bilinguals in a lexical decision task, Beauvillain (1992) found that words with language-common orthographic characteristics were responded to more slowly than words with language-specific orthographic characteristics (inhibitory)

· Altenberg and Cairns (1983) demonstrated with English-German bilinguals that subjects could not ignore the legality of nonwords in German, again when performing lexical decision in English (inhibitory).

2. Similarity Effects at Output: Phonological.

· Brown, Sharma, and Kirsner (1984) found between language repetition priming at long lags when using the lexical decision task with Hindi-Urdu bilinguals. These languages have different scripts but share the same phonology for their words (facilitatory).

· Doctor and Klein (1992), using a language inclusive lexical decision task with English-Afrikaans bilinguals, found that cross-language homophones, with different spelling and meaning in each language but the same pronunciation, were responded to more slowly than comparable frequency words (inhibitory).

· Nas (1983), using a lexical decision task with Dutch-English bilinguals, found that when subjects were required to perform in an English only condition, they responded more slowly to nonwords which were homophones for Dutch words (inhibitory).

· Lukatela and Turvey (1990) using lexical decision and naming paradigms with Serbo-Croats, found that words with different scripts but between language phonemic similarity were facilitated (facilitatory).

3. Similarity Effects at Output: Semantic.

· At short SOAs, several studies have found between language priming for translation equivalents in the lexical decision task, for example: Altarriba (1992), Chen and Ng (1990), Sanchez-Casas, Davis, and Garcia-Albea (1992); (facilitatory).

· In a similar context, priming has also been found between languages for words which are semantically related rather than being direct translation equivalents, for example: Chen and Ng (1990), Jin (1990), Kirsner, Smith, Lockhart, King, and Jain (1984), Tzelgov and Eben-Ezra (1992); (facilitatory).

· Chen and Ng (1990), using Chinese-English bilinguals, found that the between language priming was greater for translation equivalents than for semantically related words across languages (facilitatory).

· Beauvillain and Grainger (1987) used a cross-language semantic priming paradigm with English-French bilinguals. When the prime was a non-cognate homograph in one language (French: FIN), targets semantically associated with the meaning of the word form in the other language (English: SHARK) were primed at short SOAs, but not at long SOAs (facilitatory).

4. Similarity Effects at Input and Output: Orthographic and Semantic.

· Caramazza and Brones (1979), using unbalanced Spanish-English bilinguals in a lexical decision task, found that cognates in L2 gained facilitation compared to similar frequency L2 words, by virtue of having a fellow cognate in L1 (facilitatory).

· Cristoffanini, Kirsner, and Milech (1986) and Gerard and Scarborough (1989), both using Spanish and English, found between language repetition priming at long lags for cognates but not for non-cognate translation equivalents in the lexical decision task (facilitatory).

· De Groot and Nas (1991) and Sanchez-Casas, Davis, and Garcia-Albea (1992), using a masked priming technique in the lexical decision task with Dutch-English and Spanish-English bilinguals respectively, found between language priming to be greater for cognates than for non-cognate translation equivalents (facilitatory).

5. Similarity Effects in Control.

In this section, we consider similarity effects arising from bilingual versions of the Stroop task, and from tasks in which switches of language are required. The division of this and the previous evidence is somewhat loose, in that no claim is currently intended that the following effects must necessarily arise from control, nor that the previous effects necessarily must not.

Stroop.

· Using a bilingual Stroop task, Magiste (1984) found that there was more interference between languages when the relevant colour word had a similar form in each language than when it had a different form.

· Fang, Tzeng, and Alva (1981) compared between language interference patterns in the Stroop task for languages which had varying degrees of orthographic similarity. They found that between language interference was greater when the orthographies of the competing languages were more similar.

Visual recognition.

· Grainger and Beauvillain (1987) required English-French bilingual subjects to perform a language inclusive lexical decision task. They reported evidence for a time cost when subjects had to switch from identifying a French word to identifying an English word, and vice versa. However, Grainger and Beauvillain also found that if the words only showed orthographic characteristics specific to each language, switch costs disappeared.

· Grainger and Beauvillain (1988) used a semantic priming paradigm with English-French bilinguals, where a prime word preceded a target word for lexical decision. They found that mixed language pairs were significantly slower than pure language pairs. Grainger and O’Regan (1992) showed that this effect was resilient to practice.

· Meyer and Ruddy (1974) required English-German bilinguals to perform a ‘paired’ lexical decision task. Subjects were presented with two stimuli and had to respond positively only if both were words. They found that subjects took longer to respond when the words were from different languages compared to when they were from the same language.

· Kirsner, Smith, Lockhart, King, and Jain (1984) used a paired lexical decision task with English-Hindi bilinguals. These languages have quite different orthographies. Kirsner et al reported no cost for mixed language pairs.

Auditory recognition.

· Grosjean and Soares (1984) showed that when performing a phoneme triggered lexical decision task in one language, subjects were always slower to respond to words from their other language.

· Grosjean (1988) used an auditory word recognition task to examine the word-candidates that French-English bilingual subjects produced for a key word appearing in the context of a sentence. Subjects took longer to switch languages in their word comprehension if the stimulus on which the switch occurred was similar to words in the language of the first part of the sentence. This effect was replicated with English-Chinese bilinguals (Li, 1996).

Summary.

In the previous chapter, we noted how existing representational assumptions had been extended from monolingual models of word recognition to bilingual models, with the exception of distributed representation. In this chapter, we considered ways in which Seidenberg and McClelland’s (1989) reading framework might be extended to the bilingual case. We considered three possible models, the No Change model, the Bilingual Single Network model, and the Bilingual Independent Networks model. The No Change model seemed unlikely in that it could not account for the recognition of non-cognate homographs, for cross-language neighbourhood effects, or for language switching costs. We then identified the BSN and BIN models as candidate ways to extend the distributed framework, to be investigated in the rest of this thesis. We began by examining whether developmental evidence constrained our choice. We found both models wanting, the BSN model on second language acquisition, the BIN model on simultaneous acquisition, and therefore neither preferred.

We then introduced a simple connectionist model to explore the implications of using a single network to represent two word sets. We noted that the results offered an opportunity to draw together elements of several approaches to bilingual word recognition (e.g. Beauvillain, 1992; Dalrymple-Alford, 1985; Grainger and Dijkstra, 1992; Green, 1993; Kirsner, Lalor, and Hird, 1993). However, the simulations predicted that the languages stored inside the network would interfere under certain conditions. Specifically this was under conditions of between language similarity. Finally we listed approximately 30 empirical studies detailing deviance from a picture of strict  independence between the lexicons, under conditions of between language similarity.

We now turn to the first of our in-depth considerations of the candidate models. We will explore the BSN model in Chapters 5 to 8, first through computational modelling, and then by empirical testing of the model’s predictions. To construct the BSN model first requires clarification of how the distributed framework may be matched to human empirical results in the lexical decision task. We will look specifically at how the framework deals with the simulation of word priming. Importantly, the existence of word repetition priming effects threatens to undermine the very premise on which Seidenberg and McClelland’s framework was originally founded. In the next chapter, we will see why.

Chapter 5.

Priming and its simulation in distributed networks.

For the reader who wants to get ahead.

Prior to constructing the Bilingual Single Network model, Chapters 5 and 6 fill in a crucial step in establishing how distributed models of word recognition can be related to human empirical data on word priming. However, the reader who wants to get ahead may turn to Chapter 7 and continue with the bilingual story, provided they take the following points for granted. The Seidenberg and McClelland framework can form a coherent model of human performance in the lexical decision task. The framework can model the variety of priming effects that exist in that paradigm. Long term lexical repetition priming is best simulated by training a network for a small number of additional cycles on the prime and then testing on the target.

Introduction.

In the course of this and the following chapter, we will pursue four aims.

1. To review the types of priming found in word recognition tasks.

2. To review the ways that distributed models of word recognition have accounted for these effects.

3. To introduce a set of simulations to explore the ways in which connectionist networks can plausibly generate priming effects.

4. To produce an integrated account of priming effects in the Seidenberg and McClelland framework of word recognition.

We will then use this account to evaluate the Bilingual Single Network model against the empirical data on the patterns of priming found within and between languages. Before we begin, let us be clear why priming is an important issue for distributed models, be they models of monolingual or bilingual lexical processing.
Why is priming an important issue for distributed models of lexical representation?

In a moment we will examine the main features of priming, but here we can cut to the chase: the evidence concerning “repetition” priming will tell us that if a word has been perceived recently, then recognising it again soon after becomes easier. This effect lasts from minutes up to hours and even days. The effect is found for words, but not for word-like strings of letters (i.e. nonwords). A straightforward explanation for the repetition priming effect is that the “word unit” responsible for representing the word in the cognitive system has somehow been “enhanced”. In terms of the tradition models we encountered previously, the word unit may have gained a “higher resting activation”, or a “lower response threshold”, or an “elevated position in a list of candidates”. The enhancement will have been caused by the first access of the word unit and subsequent accessing of this unit will be easier as a result. Since nonwords do not have units representing them, they will not experience the same repetition effect.

Seidenberg and McClelland’s (1989) framework postulates that processes of word naming and recognition occur through computing codes, and that these computations take place over distributed representations. For example, naming a word would involve computing the phonological code from the orthographic code. The use of distributed representations replaces the need for specific word units. A task like lexical decision then becomes one of accessing the distributed representations responsible for storing information about all words, rather than attempting to access an independent unit for any given word. Seidenberg and McClelland stress: 

“Our main point is that, contrary to standard views of lexical decision, access to individuated lexical representations associated with particular words is not required by the task.” (p. 552)

The same set of connection weights and processing units handles the processing of all lexical information, both words and nonwords alike. However, the functional equivalents of word units are seen as emerging from the behaviour of these distributed representations. Referring to a model of memory designed using similar processing principles, McClelland and Rumelhart (1986) comment:

“We see the traces laid down by processing each input as contributing to the composite, superimposed memory representation... The composite memory trace formed as a result of this experience plays the same role in our model that the set of logogens or detectors play in a model like Morton’s, or, indeed, the interactive activation model of word perception.” (p. 193)

More recently, Plaut (1995b) comments:

“In the general theoretical perspective, a word is not a structural entity to be located somewhere in the system, but rather the functional consequence of the way in which different types of information (e.g. orthographic, semantic, phonological) interact.” (p. 317)

The problem of priming in distributed networks is this: if in a distributed model, the processing of words and nonwords are activities of the same set of representations, why should words alone show a long lasting effect of repetition? Should not the enhancement of these representations work equally for words and nonwords, if the representational format alone does not distinguish between them? Now this turns out to be an important question, since some theorists have taken the fact that words alone show a long lasting repetition effect, to be the strongest evidence of the psychological existence of word units: 

“... Explorations of repetition priming [provide] an empirical rationale for postulating a level of representation - lexical units - distinct from but mediating among words’ forms and meanings: A demonstration, as it were, of the ‘psychological reality’ of words.” (Monsell, 1985, p. 191)

To sustain the claim that word units are not required, distributed models of word recognition must demonstrate that long term repetition priming can occur in the lexical decision task for words but not for nonwords. We will now review the characteristics of priming in more detail.

A review of lexical priming in monolinguals.

With regard to the psycholinguistic tasks that constitute the body of evidence on lexical priming, the priming effect is instantiated as follows: words repeated from an earlier encounter in a given experiment are responded to more quickly and/or more accurately than words being encountered for the first time. Priming occurs across a wide range of tasks (see McNamara, 1992, for a review). These include semantic categorisation (e.g. Rips, Shoben, and Smith, 1973), lexical decision (e.g. Meyer and Schvaneveldt, 1971), item recognition (e.g. Ratcliff and McKoon, 1978), pronunciation (e.g. Meyer, Schvaneveldt, and Ruddy, 1975), and judgements of spatial location (e.g. McNamara, Altarriba, Bendele, Johnson, and Clayton, 1989). The fact that the phenomenon is so general to tasks that require memory retrieval suggests that priming may be caused by a mechanism that is fundamental to the processes involved in retrieval.

Priming is found to different degrees and over different time courses across different types of stimuli. Monsell (1985) identifies three priming effects: the lexical effect, the supra-lexical effect, and the sub-lexical effect. The lexical effect is the most long lasting (over hours and days), and, as Monsell’s quote in the above Section illustrates, is thought to be most relevant to the lexical level of representation. Supra-lexical effects refer to priming according to higher properties of words than their identity, such as their meanings and associations. Sub-lexical effects refer to priming according to lower properties, such the orthographic similarity between letter strings based on shared letters or shared letter clusters. Supra- and sub-lexical effects are generally much more transient, declining substantially over the course of seconds. Below we consider priming according to whether it is long lasting or transient, and discuss the different potential causes of these effects.

Priming over long intervals.

The most surprising characteristic of word repetition priming in tasks such as lexical decision is that the effect is quite so robust and long lasting. “Lag” refers to the number of trials between the first presentation of a stimulus and its repetition. If a target follows a prime immediately, this is a lag of zero. Scarborough, Cortese, and Scarborough (1977) found little reduction in the size of the priming effect for words between a lag of 0 and a lag of 15. The respective priming effects were 87 and 77 msecs at these lags. While repetition priming was found for word-like nonwords, this effect decreased the more trials that passed between the first and second presentation. The equivalent priming values for nonwords at lags 0 and 15 were 75 and 18 msecs. When Scarborough et al tested subjects two days later, there was still a significant repetition effect for words, of 26 msecs, but no sign of an effect for nonwords. The word priming effect was lexical in nature rather than visual, since there was no reduction in the size of the effect when the letter case was changed between first and second presentation. Thus priming reflects a more abstract level of representation than simply the visual appearance of a word.

The long term priming effect is isolated to the word itself. Some facilitation is found between morphologically related items, that is words which originate from the same route (e.g. between HEAL and HEALER, or between HEAL and HEALTH; Fowler, Napps, and Feldman, 1985; see Stolz and Feldman, 1995, for a review), as well as between inflections of a word (Drews and Zwitserlood, 1995). These effects are smaller than that found with the repetition of the word itself. However, no long term facilitation effect is found for morphologically unrelated but orthographically similar items (Hanson and Wilkenfeld, 1985; Napps, 1989; Murrell and Morton, 1974; Napps and Fowler, 1987). Indeed, when an orthographically similar but morphologically unrelated item directly precedes the target in lexical decision, inhibition is often obtained, relative to a control condition (e.g. Grainger, 1990).

Only Rueckl (1995) has shown a reliable priming effect between orthographically similar but morphologically unrelated items extending over more than a few seconds. However, his priming technique is an unusual one: Rueckl constructed several sets of 24 four letter words out of the same limited group of 12 letters. Others lists of words were constructed from a different set of 12 letters. In the priming phase, subjects named one of the sets of words. In the test phase, they were required to perform a tachistoscopic recognition task on a second set of words. If the set of words was repeated between the first and second phase, subjects showed the usual repetition priming effect. However, if the word set in the second phase was constructed from the same limited set of letters as that used in the priming task, subjects showed improved recognition compared to when the prime and target word sets were constructed from different letter sets. The interpretation of this effect is confused somewhat by the fact that it occurred equally well for pseudowords. It is thus not clear whether this is a lexical or sub-lexical effect. In any event, this result does not alter the finding that priming does not occur over long periods between single lexical items which are linked by orthographic similarity alone. Indeed Rueckl comments that his paradigm “could be likened to priming a neighbourhood rather than priming an individual neighbour” (p. 389).

Scarborough, Cortese, and Scarborough (1977) found that the long term priming effect for word repetitions interacted with the frequency of a word’s occurrence. Low frequency words gained more from a repetition than did high frequency words. They also found that the priming effect was insensitive to changes in response probabilities, implying that the effect was not arising at the response translation or output stage of the lexical decision task. Scarborough, Gerard, and Cortese (1979) found that lexical priming transferred across tasks. Naming visually presented words facilitated later performance on these words in a visually presented lexical decision task. Monsell (1985) reported that this transfer was almost complete, i.e. that there was no reduction in the size of the priming effect when subjects changed task between first and second presentations. Within a modality, priming has been found to transfer across a number of tasks (see Monsell, 1985, for a review). For example, the production of imageability ratings for words and the pronunciation of the opposite of display words have both been found to aid later tachistoscopic recognition of the same words (Clarke and Morton, 1983; Jacoby, 1983a); so too have performing rhyme judgements and matching words to definitions (Jacoby and Dallas, 1981). Kempley and Morton (1982) found cross task priming in identifying spoken words in noise. Monsell (1985) reported results showing that reading a word either silently or aloud, as well as judging whether a word formed an acceptable completion of a sentence, both primed later performance in the visual lexical decision task. The prevalence of cross-task repetition priming strongly suggests that priming is mediated by abstract lexical representations, rather than representations particular to any given task.

On the other hand, lexical priming appears to be predominantly modality specific, in that priming between visual and auditory domains is often reduced or eliminated (e.g. Jacoby and Dallas, 1981; Kirsner and Smith, 1974). Scarborough et al (1979) found no priming effect when subjects were initially asked to name pictures and later asked to perform lexical decision on the picture names.

Jacoby (1983a and 1983b) proposed that lexical repetition priming may simply be a form of memory for specific episodes that just happen to involve words. That is, subjects respond faster to a repetition because they remember having seen the word before. This argument was discussed in detail in Chapter 3, where it was concluded that, while a component of the repetition priming effect may be episodically based, the major component appears to be due to the facilitation of underlying lexical representations. Furthermore, the episodic contribution may vary according to the attentional demands within the task (Jacoby, Toth, and Yonelinas, 1993).

Priming over short intervals.

While the word repetition effect is distinguished by its long lasting nature, other priming effects are found over a shorter time course. We have already seen that word-like nonwords show a repetition priming effect that drops off over the course of a few trials. This in itself suggests that at least two mechanisms underlie priming, one short lived, depending on whether a letter string has letter clusters often found in words, a second long lived depending on whether a letter string forms an existing word. Monsell (1985) found that priming for words was maximal if a repetition appeared on the first or second trial after the first presentation, and then fell slightly to a plateau, remaining at the same level for repetitions up to 30 trials later. This suggests that the short lived and long lived effects initially combine, but later on, only the word effect remains.

Repetition priming is also found over very short intervals, for example when a prime is presented a matter of a few hundred milliseconds before the target word in a lexical decision task. If the prime is presented in such a way as to prevent the subject from being aware of it (for instance by exposing it for a very short duration and then replacing it either with a mask or the target, which wipes away any residual visual trace), another type of priming effect is apparent. Forster and Davis (1984) reported that under these conditions, word priming occurs but no longer exhibits a frequency effect. Forster (1987) found that the effect can span a single intervening word, although it is then much reduced. No effect is found if two words intervene between prime and target. Finally, he found that priming is possible between orthographically similar prime-target pairs. This “form related” word priming can occur both with nonword and word primes, but only for word targets. It is eliminated when the target is in a dense orthographic neighbourhood.

Humphreys, Evett, Quinlan, and Besner (1987) used a technique where prime and target were briefly exposed between two pattern masks. They found that the size of the priming effect between letter strings presented under these conditions depended only on how many letters the prime and target had in common: this “orthographic” priming occurred equally well if the prime was a word or a nonword (Evett and Humphreys, 1981). Again, note that the prime and target appear in different letter case, so this effect is at an abstract orthographic level (e.g. Monsell’s sub-lexical level). Humphreys et al (1987) have suggested that the priming found here “occurs when primes and targets are not classed as discrete perceptual events” (p. 105).

Neither of these priming effects are found after more than one trial has intervened between prime and target. The shortness of these effects, and their similarity-based nature, suggest that they are distinguishable both from nonword priming, which Scarborough et al (1977) reported as declining over the course of five or ten trials, as well as from the enduring word repetition effect.

There is a further type of word priming which occurs over very short intervals. This is a priming effect between different words that are semantically or associatively related (Monsell’s supra-lexical effect). For example, Meyer and Schvaneveldt (1971) showed that a word like BUTTER was recognised more quickly when preceded by a related word such as BREAD. A number of explanations have been put forward to account for this effect. Spreading activation theory (Collins and Loftus, 1975; McNamara, 1992, 1994; Quillian, 1967) proposes that related concepts are linked in semantic memory like a network of interconnected nodes. On recognition of a word which activates its respective node (e.g. BREAD), activation automatically spreads to related nodes (such as BUTTER, CAKE). This facilitates later recognition of the words for these concepts. Compound cue theory (e.g. Dosher and Rosedale, 1989; Ratcliff and McKoon, 1988) on the other hand, suggests that semantic memory is accessed using a cue which includes not only the current input (e.g. BUTTER) but also the preceding context (e.g. BREAD). When the preceding context is related to the current input, the overall compound cue is more effective in retrieving the relevant concept (BUTTER). A third theory revolves around a form of semantic representation used in distributed networks (Kawamoto, 1988; Masson, 1991, 1995; McRae, de Sa, and Seidenberg, 1993; Plaut, 1995; Sharkey and Sharkey, 1992). Meanings are thought of as represented using sets of semantic features. If two meanings are very similar, they will share a lot of semantic features. Meanings which have a large overlap of features may prime each other, on the following assumption: if a pattern of activation for one of the meanings is still persisting in a network when it comes to process the second meaning, many of the appropriate semantic features will already be activated. As a result, it will take the network less time to finish off instantiating the feature set for the second meaning than if it had to start from scratch.

McNamara (1992) found that, like orthographic priming, semantic priming could span an intervening item (e.g. BREAD-DOG-BUTTER), but was significantly reduced. Thus its maximum duration seems to be no more than two trials. McNamara also found that semantic priming was possible between more distantly related concepts. For example, STRIPES could prime MANE via the path STRIPES-TIGER-LION-MANE, although again the size of such a priming effect was much smaller. Lastly, notice that there is a distinction between priming between semantically related words (BREAD, CAKE) which have a similar meaning, and between associatively related words (BREAD, BUTTER), which frequently occur close together. Associative priming has been found to be both stronger than priming between merely semantically related words (Seidenberg, Waters, Sanders, and Langer, 1984), and asymmetrical, so that for example BED might prime PAN, but PAN would not prime BED (Neely, 1991).

While the relevance of semantic priming to bilingual lexical representation is less obvious, we shall shortly see when we review a model of semantic and associative priming, that associative priming may produce a direct analogy to the sorts of effects that are found between translation equivalents over short intervals in the bilingual lexical decision task. In the meantime, we will examine how current connectionist models of lexical representation propose to account for the various forms of lexical, supra-lexical, and sub-lexical priming outlined thus far.

Distributed models of priming.

In this section, we will review several connectionist models which attempt to implement priming in distributed representations. Processing in a connectionist network is predominantly determined by two factors, the strength of the connection weights and the activations on the processing units. We might therefore expect two types of priming, one based on changes to connection weights, one based on the activation state of the network. Models of priming in distributed networks indeed fall into these two categories. For example, models that use changes in connection weights include: McClelland and Rumelhart (1986), O’Seaghdha, Dell, Peterson, and Juliano (1992), Seidenberg and McClelland (1989), and Becker, Behrmann, and Moscovitch (1993). Those that employ activation state accounts include: Masson (1995), Plaut (1995), Bullinaria (1995b), and Moss, Hare, Day, and Tyler (1994). To begin with, we will examine the Seidenberg and McClelland account, since it is the model with which we have been most concerned thus far. Let us start by recapping the way this model accounts for performance in the lexical decision task. This will have important implications in how it might generate an account of the variety of priming effects found in the task.

Distributed models of priming I: Seidenberg and McClelland, (1989).

In the following paragraphs, we consider the precise processing details of Seidenberg and McClelland’s account of lexical decision, and the priming effects they demonstrate in their model. In doing so, we will identify some serious problems for the model in trying to account for long lag repetition priming. In Chapter 2, we were introduced to the idea that in the Seidenberg and McClelland framework, the primary mechanism involved in performance on the lexical decision task was the autoassociation of orthographic information. Figure 5.1 redraws the framework in terms of its component networks, and identifies the information sources (i.e. error scores) that are used in making lexical decisions.

Figure 5.1: The Seidenberg and McClelland (1989) model, re-drawn to show its component 3-layer networks and the error scores which are postulated to contribute to performance in the lexical decision task. Bold lines indicate the networks implemented in the original model.


The initial strategy in this model is to test the familiarity of the letter string which it receives as input. Orthographic information is reproduced via hidden units shared with the orthography-to-phonology route (1989, p. 527). The accuracy of reproduction of the orthographic input is then seen as a measure of the familiarity of the letter string. If the autoassociation error score for a given input (Error-O in Fig. 5.1) is very low, reflecting an accurate reproduction, the input is a word. If it is high, the input is a nonword. Decisions of lexicality may be derived using an “error criterion”. However, due to the generalisation abilities of the orthographic autoassociation network, word-like nonwords may be reproduced with a low or intermediate error score. This will cause problems for an orthographic error criterion approach, because familiar looking nonwords might be misclassified. In the presence of such stimuli, the model instigates a “Plan B”. A pronunciation is generated for the input string, and the familiarity of the pronunciation is now tested. A similar method is used, autoassociating the phonological code and deriving an error score (Error-P in Fig. 5.1). This score is again checked against a criterion, to test if this is a known pronunciation and thus an existing word (p.552). Once more, certain stimuli might confound this approach; for instance nonwords that have a very plausible pronunciation, or even nonwords that sound like real words (such as the letter string BRANE). In the presence of such stimuli, the model needs more information to discriminate words from nonwords, and so instigates a “Plan C”. It now consults semantic information, via the separate semantic route (O(HS(S in Fig. 5.1), in order to see if a meaning exists for this string. Plaut, McClelland, Seidenberg, and Patterson (1996) envisage that semantic representations will be sparsely coded to prevent word-like nonwords producing “pseudo-meanings” (see later). Thus the model has a suite of strategies to approach the lexical decision task. Seidenberg and McClelland assume that the response mechanism favours one of these sources of information depending on the nature of the stimuli, but that all strategies will proceed in parallel.

A number of points can be made about this model of lexical decision. Firstly, the model predicts that lexical decision response times should be correlated with orthographic autoassociation error scores. Fera and Besner (1992) analysed the human response times from a lexical decision task for the items on which the Seidenberg and McClelland model had been trained. They found that the model’s orthographic error score did not account for a significant proportion of the variance for the human response times to words. However, they did find that it accounted for a significant proportion for the response times on nonword trials. This suggests orthographic familiarity may play a role, but not necessarily in the recognition of words.

Secondly, in the model the ultimate recourse to distinguish familiar looking/sounding letter strings from words is to compute a semantic code. If no semantic code exists for a letter string, it can’t be a word. If you have to end up computing the meaning of the input string, why not base lexical decisions on this source of information all the time? Presumably, the assumption here is that computing the semantic code is more time consuming than a quick check on orthographic or phonological familiarity. This seems plausible, since the relation between word form and meaning is an arbitrary one, while that between orthography and phonology is systematic and therefore more redundant; orthographic information itself is immediately available at the input. However, in the model, the semantic route appears to be the same as any other route, involving the mapping between two sets of units via a single layer of hidden units. It is not apparent from the architecture alone why deriving a meaning should take longer than reproducing orthography or producing phonology: mappings to semantics may require more hidden units, but these units will operate in parallel
. 

In fact there is good evidence that the semantic status of words influences performance in the lexical decision task, implying that meanings are routinely accessed. For instance, James (1975) showed that for low frequency words, those with abstract meanings were named more slowly than those with concrete meanings; and we have already come across the semantic priming effect that is witnessed between semantically related words in the lexical decision task (Meyer and Schvaneveldt, 1971). Thus it seems that the semantic route may play more of a role in the lexical decision task than is suggested by Seidenberg and McClelland’s account.

On the other hand, there is also evidence that some strategic techniques are employed. James found that the abstract/concrete effect was eliminated if illegal letter strings were used as the nonword stimuli. And under these conditions, Shulman and Davison (1977) found that the semantic priming effect was reduced. In this circumstance, orthographic familiarity testing would produce unambiguous results for illegal nonwords, and thus could be used in preference to the semantic route as Seidenberg and McClelland suggest. However, note that in the Shulman and Davison study, the semantic priming effect was merely reduced with illegal nonwords, not eliminated. This supports the view that the semantic route is always employed to some extent in the lexical decision task. 

Lastly, in the implemented model, we might ask why the orthographic autoassociation takes place via the hidden units for the phonological route. Why not via the hidden units in the semantic route? Or a separate set of hidden units? Or no hidden units at all? The motivation for choosing the phonological hidden units is not clear.

We have analysed the Seidenberg and McClelland model in some detail here because these design decisions will have crucial implications for the way in which the model can account for priming data. Seidenberg and McClelland propose to model priming as follows. The network is trained up on its normal corpus. To prime the model, it is trained on a single word alone (the prime), applying the same learning algorithm as before. They continue:

“This procedure yields orthographic and phonological priming effects, which have been studied by Meyer, Schvaneveldt, and Ruddy (1974), Hillinger (1980), and Tanenhaus, Flanigan and Seidenberg (1980). For example, Meyer et al observed that lexical decision latencies to a target word such as ROUGH were facilitated when preceded by the rhyme prime TOUGH but inhibited when preceded by the similarly spelled non-rhyme COUGH.” (1989, p. 540).

The studies that Seidenberg and McClelland cite suggest that they are modelling priming over short intervals here. In the Meyer et al study, two words are presented simultaneously. In the latter two studies, the priming effect occurs over time periods of between 200 and 500 milliseconds. Priming at this short interval is accounted for by changing the connection weights in the orthography to phonology route through extra training on a single mapping.

Now the key point about distributed representations is that all items are stored in the state of the entire network. Extra training on a single item does not simply make that item alone more accessible from the “filing cabinet”. It changes the entire state of the filing cabinet for accessing all items. When such a change takes place, there will be winners and losers. And indeed, Seidenberg and McClelland demonstrate how priming on the pronunciation of the word PINT not only improves performance on PINT, but also causes performance on the word TINT to degrade. This is because the words represent an inconsistent mapping of the word body -INT from orthography to phonology. Improvement on one version of the mapping is at the expense of the other. This disruptive effect of competitors is an inherent property of distributed representations. However, while this effect may be appropriate in accounting for the inhibitory effects of juxtaposed inconsistent pronunciations of the TOUGH/COUGH variety, it is not appropriate in long lag repetition priming for words. In repetition priming, the performance on a single word is enhanced, apparently without impairing performance on other words. This is the reason why it is taken as strong evidence for localised word units.

If we were to use extra training on a single item to account for long lag word repetition priming, the initial commitment of Seidenberg and McClelland’s model to account for lexical decision without using the semantic route would now cause us problems. As we have seen, word priming and nonword priming show different characteristics. Yet from the point of view of the orthographic associator, there is no difference between these strings. Meaning is represented in a semantic route over on the other side of the network. How can the time course of word and nonword priming be different if these strings have the same status in the orthographic network? The implication must be that somehow the fact that a string has a meaning gets communicated to the orthographic network, and extra training occurs only when this happens. But even then, we might expect the extra training on a given word to generalise to other words and nonwords that are very similar to it. However, as we saw earlier, such similarity based effects aren’t found over long intervals.

On the other hand, if we accept that the network must use the semantic route in the lexical decision task, then different problems arise. It becomes hard to account for the complete transfer of priming between word naming and the lexical decision task. This is because separate routes  are now being used to perform each task: lexical decision in the orthography-to-semantics route, naming in the orthography-to-phonology route. The original model could account for the cross-task transfer by pointing out that both naming and lexical decision proceed via the orthography-to-phonology route. But even this account relies on the decision to allow the orthographic autoassociation to occur via the hidden units in that route rather than in the semantic route. We have already noted that this decision is not strongly motivated. Notice also that for full transfer from naming to lexical decision to occur, as found by Monsell (1985), the priming must happen in the single layer of weights (O(HP) fully shared by naming and lexical decision.

To conclude, in the Seidenberg and McClelland model, priming is achieved by extra training on a single item. This method is used to address a phonological priming effect occurring for very short intervals between target and prime. In considering an extension of this approach to long lag repetition priming for words in the lexical decision task, two points arise:

1. extra training in the orthography autoassociator would appear to lack the requisite word/nonword distinction, and might exhibit undesirable similarity-based generalisation;

2. the empirical evidence suggests that at least part of the priming must take place in the orthography-to-semantics route. Such a move would cause problems for the model in accounting for cross-task transfer of priming.

We will now look at several models which have sought both to implement the orthography-to-semantics route, and to model priming effects in this route.

Distributed models of priming II: Masson (1995 ).

Figure 5.2a) shows the processing modules in Masson’s (1995) Distributed Memory Model of word naming. These modules are very similar to the structure of Seidenberg and McClelland’s framework, shown again for comparison in Figure 5.2b). The major difference between the models is that Masson’s employed a “Hopfield net” (Hopfield, 1982), which has full connectivity and interactive processing. In such a network, every unit is connected to every other unit, and activation cycles around the network until it reaches a stable state. Units in a Hopfield net have binary states which they flip between based on probabilities derived from their net input. The major advantage of these networks is their pattern completion ability. When given a part of one of the patterns on which they have been trained, they can restore the full pattern over all of the units. Units in Masson’s network were split into groups representing either orthography, phonology, or semantics. No units were “hidden” or available for the network to use in developing its own internal representations.

Masson trained his network to produce the phonological and semantic codes for three pairs of semantically related words, when given their orthographic codes as input. Codes for orthography, phonology, and semantics were formed from randomly generated binary patterns across each bank of the units. Semantically related items shared two thirds of their semantic patterns in common. Orthographic units constituted 130 out of 250 units, phonology 40 units, and semantics 80 units. On a naming trial, the network was given the orthographic pattern for a word and allowed to complete the remainder of the full pattern on the rest of the units. The rest of the pattern constituted the codes for the word’s pronunciation and meaning. The number of processing cycles the phonological units took to reach a stable state was taken as an indication of naming time.

Masson used the model to simulate semantic priming effects over short intervals. The model instantiated the Distributed Network Theory of semantic priming, whereby one concept primes another because the concepts have overlapping patterns of activation on the same set of distributed processing units. Priming was simulated in the following fashion: the orthographic pattern for the prime was clamped on the orthographic units, and the network allowed to start building the semantic and phonological patterns on the respective units. After a given number of cycles, the orthographic pattern for the target word replaced the prime on the orthographic units, and processing was allowed to continue. Since some of the appropriate pattern of activation for the target was already instantiated on the semantic units when the target replaced the prime, completion of the target’s phonological pattern was faster. Compared to its base rate naming time, a target received facilitation when primed by a semantically related word.

Three points are notable about this model. Firstly, priming over very short prime-target intervals was modelled by allowing activation to persist on the network’s processing units from priming trial to target trial. Secondly, this model provides no way to account for associative (BREAD-BUTTER) as opposed to purely semantic (BREAD-CAKE) priming using semantic pattern overlap. Thirdly, orthography was privileged with more processing units than semantics and phonology combined. The network was helped in the naming task because the orthographic input already provided more than half of the pattern that was to be completed. One might question the validity of using more units to code a word’s form than its meaning, let alone its meaning and phonological representation combined.

Distributed models of priming III: Plaut (1995a).

Plaut (1995a)
 proposed a model which offers the potential to account for both semantic and associative priming. This model also employed interactive processing, but this time in the form of a distributed attractor network. This type of network is similar to the three layer feedforward networks previously encountered, except that attractor networks have interactive feedback loops that allow them to “home in” on the correct output. Instead of computing outputs in a single set of calculations (input to hidden to output), the network is better thought of as following a processing ‘trajectory’ through a ‘state space’. The state space defines all of the network’s possible states of activity, and the trajectory through it terminates at the network’s output solution.

Plaut defined a set of 128 structured semantic patterns, in which patterns were related or unrelated to one another. Random orthographic input patterns were assigned to each semantic pattern reflecting the arbitrary relation of word forms to meanings. The network architecture is shown in Figure 5.2c). 

Figure 5.2:   a) Masson’s (1995) model of priming in word naming; b) Seidenberg and McClelland’s (1989) framework; c) Plaut’s (1995a) model of semantic and associative priming; d) Becker, Behrmann, and Moscovitch’s (1993) model of word priming in a distributed attractor network.


There were 20 orthographic input units, 100 hidden units, and 100 semantic output units. On average 2 out of 20 input units and 10/100 output units were active for each pattern.

The main distinction of Plaut’s model was in its training regime. The network was not generally “reset” before training on each new item, but was trained to output the semantic pattern for the new word from the starting point of the network’s state at the end of the previous training trial. The network thus learnt each item by plotting a trajectory from its inherited starting point to the correct output for that word. In general, a given word could be preceded by any other word during training, so this would have little impact. However, each word was assigned an “associate”, which preceded it in training with a probability of 0.2. This meant that the network had more practice learning the trajectory from the starting point left by a word’s associate than from the starting point of any other word.

This technique provided the network with a mechanism to model both semantic and associative priming over short prime-target intervals. In the same way as in the Masson model, semantic priming was simulated by allowing the semantic pattern of the prime to persist on the output units. In this case the network had less distance to travel in state space to get from the prime’s semantic pattern to the target’s semantic pattern, compared to the situation where the target was preceded by a semantically unrelated word. Associative priming on the other hand was simulated by allowing a target’s “associate” to precede it during testing. The network could now tread a familiar trajectory from the starting point of the persisting activation left by the associative-prime through state space to its final output state. The associative priming produced by this mechanism was stronger than the semantic priming effect, and also highly asymmetric. That is, the priming effect arose when a word was preceded by its associate, but not when the order was reversed. This is because the network was only used to travelling from associate to target during training: words were rarely followed by their associate during training (0.6% of the time against 20% for preceding). We will later return to this idea as a possible source of the asymmetry found in short interval priming between translation equivalents in bilinguals.

Finally, Plaut’s network also simulated the ability of associative priming to span an intervening word (e.g. BREAD-DOG-BUTTER) (cf. Joordens and Besner, 1992; McNamara, 1994) and the interaction of priming with frequency. However, the model had problems in accounting for data that shows small priming effects between less closely related words (e.g. STRIPES to MANE via TIGER and LION; McNamara, 1992). Its claim would have to be that the semantic feature patterns for STRIPES and MANE have some (lesser) degree of overlap. (Work by Bullinaria, 1995b, has suggested that some form of mediated priming may be simulated using this approach).

In conclusion, activation persisting in the network between trials was again used to model short term priming effects, this time both semantic and associative.

Distributed models of priming IV: Becker, Behrmann, and Moscovitch (1993).

We shall consider this model in some detail for two reasons. Firstly, it seeks to simulate long term repetition effects. Secondly, the model follows the contemporary distributed view that words are best conceived of as attractors in the state space of an interactive network. For practical reasons, the simulations of priming in Chapter 6 employ a strictly feedforward architecture, so the Becker et al model may be instructive in suggesting how the results in that chapter would extend to an attractor network.

Becker, Behrmann, and Moscovitch (1993) used an interactive network to model long term priming effects between words which were orthographically or semantically related. They used a version of Hinton and Shallice’s (1991) model of deep dyslexia, with the phonological codings added by Plaut (1991). The model is shown in Figure 5.2d).

The network was trained with the deterministic Boltzmann machine learning procedure (Peterson and Anderson, 1987). It had to map the orthographic codes for 40 three and four letter words to their semantic codes. The semantic codes were arbitrarily related to the orthographic codes, but split into 5 internally related categories. Semantic codes were also mapped to phonological codes. As in the Plaut (1995a) model, words were conceived of as attractor basins in state space. If the network were to have unit activations similar to one of these states, then it would cycle into the stable state for that word. Becker et al proposed that long term priming is equivalent to deepening the attractor basin for a given word, so that the network will subsequently fall into this state in fewer cycles. In contrast to normal models, where input information is fixed on the orthographic units, Becker et al proposed that orthographic units should receive input as activation, but then be allowed to cycle into their own state. Thus the model provided both for orthographic attractor basins and semantic attractor basins. (No information was provided concerning the model’s performance in naming, that is, generating accurate phonological outputs for orthographic input patterns).

Becker et al proposed to model priming by changing the weights in the network according to activity in the network during the priming trial. However, following Hinton and Plaut (1987), they used a separate set of weights to account for the modification due to priming. These ‘fast’ weights were modified according to the Hebb rule, when the network had settled into a stable state in response to the prime. The network’s knowledge of word mappings, established by the Boltzmann procedure, was stored in ‘slow’ weights, and not changed during testing. The fast weights were set to zero after each priming trial “to avoid cross-talk between trials” (p. 234).

The network sought to simulate performance on two sorts of tasks. The first was called a “pre-semantic” word recognition task, and related to the speed with which the orthographic units settled into a stable state. Becker et al give lexical decision as an example of a pre-semantic task. The second was called a “semantic” task, relating to how quickly the semantic units settled into a stable state. Becker et al do not give a specific example of the task they have in mind here, beyond a “semantic retrieval task”, so it is not clear precisely what empirical results they are modelling in this second case.

Becker et al then looked at four sorts of long term priming, for which we will add illustrative examples: Repetition priming (such as between the words DOG and DOG); Form and Semantic priming (e.g. between DOG and HOG); Semantic priming (e.g. between DOG and PUP); and Form priming (e.g. between DOG and LOG). We should note that no empirical evidence has been found for long term semantic priming nor for long term form-related priming between pairs of words, in the lexical decision task. The results are shown in Table 5.1. The values represent priming effects in number of cycles to reach a stable state, between primed and unprimed processing of the target. The Pre-semantic column shows the effect over the orthographic units, the Semantic column shows the effect over the semantic units. Errors were defined as trials on which the network fell into the attractor (stable state) for the wrong word, or on which the number of cycles to settle was beyond “two standard deviations of the mean unprimed pre-semantic or semantic number of cycles”.

Table 5.1:
Results from Becker et al’s (1993) simulations of long term priming 



(see text for details). Positive values show facilitation effects.

Priming Type
Examples
“Pre-semantic” priming effect

(e.g. on the lexical decision task)
“Semantic” priming effect

(e.g. on a ‘semantic retrieval task’)
Errors

Repetition
DOG-DOG
7.5
16
3%

Form & Semantic
DOG-HOG
-3
2.5
31%

Semantic
DOG-PUP
3
6
12%

Form
DOG-LOG
1.5
-1
32%

Let us first consider the priming effects in the network’s response times. Since it is not clear what data is being simulated in the “Semantic” task, we will concentrate on the results for the “Pre-semantic” task. These are taken to represent long term priming effects in the lexical decision task. The results show a big priming effect for the repetition of a word, in line with empirical results. Primes which are related in both form and meaning, however, appear to have an inhibitory effect on the target, contrary to the human data. If the relation is a purely semantic one, there is a priming effect approximately half the size of the repetition effect. There is no support for such a long term semantic effect in the human empirical literature. Form priming also gives a small facilitation effect, but again, such an effect is not found in the empirical literature.

The “error” data produce an interesting pattern of results. In both situations where the prime was related to the target in form, the weight change procedure produced a large number of errors in subsequent performance. Following Hinton and Shallice’s original model of deep dyslexia (1991), we may offer an interpretation for this result. The orthographic representations provide a ‘pointer’ to the semantic representation, from which position the network cycles into its stable attractor state. If this pointer is moved by form-related priming, it will point to the wrong position in semantic space, and the network will now be liable to cycle into the wrong attractor. Form-based effects are thus damaging to this network’s performance. (This explanation may be complicated by the fact that Becker et al employ attractors for orthographic as well as semantic information. Hinton and Shallice only employed attractors at the semantic level.)

Finally, no results were reported for performance on other words subsequent to priming: it is not clear whether the weight change due to priming caused performance on other words to worsen. Given the high error rate between related items, one might guess that it did.

In sum, this model simulated long term priming by weight change, albeit of a different set of weights than those used to store network knowledge. The model captured long term repetition effects, but showed semantic and form related facilitation effects for which there is no support in the empirical data. Long term priming effects did not appear to be limited to the word itself, but to have knock on effects to related words.

Distributed models of priming V: O’Seaghdha, Dell, Peterson, and Juliano (1992) and McClelland and Rumelhart (1986).

We finish this review of models by looking at two more implementations of priming effects using weight change. O’Seaghdha, Dell, Peterson, and Juliano (1992) compared backpropagation and interactive activation models in simulating empirical data concerning form-related priming over short intervals in a word naming task. We will only be concerned with the backpropagation network here, since it alone used distributed representations. The model was trained to name 3 letter English words of a Consonant-Vowel-Consonant form. The network was presented with the whole orthographic pattern for a word and required to sequentially output the phonological coding for the onset, nucleus, and coda on the output units. Its architecture combined features of Jordan and Elman nets (Jordan, 1986; Elman, 1988), allowing feedback from output units and from hidden units to act as a supplementary input to the network on sequential processing steps. The network had to learn 50 CVC words, and in the first instance, was trained for 100 epochs with a learning rate and momentum of 0.5. Priming was modelled by extra training on the prime alone for 60 epochs, with the learning rate and momentum kept at the same level. Thus priming was equivalent to training the network about half as much again on the prime word.

O’Seaghdha et al found that performance on the prime was enhanced by this extra training. But so too was performance on items that shared the same initial CV_ string. Performance on items that shared the same _VC changed little, indicating that the sequential nature of the mapping focused priming on initial rather than later phonemes. There was also impairment on other words stored in the net which had no letters in common with the prime. O’Seaghdha et al also found that priming through training produced less effect when the network was trained more to begin with, e.g. 200 or 300 epochs. Since performance on the prime was already fairly good under these circumstances, extra training did not serve to produce significant weight changes in the network. (Weight changes are driven by poor performance on a given pattern). O’Seaghdha et al interpreted this reduction of priming in more highly trained networks to be analogous to the reduction of long term priming found for high frequency words in human subjects.

In sum, O’Seaghdha et al simulated form-related priming over short intervals by extra training on prime words. However at least with networks trained for 100 epochs, the extra training on the prime also warped the performance of the network on other items, improving it for similar words, impairing it for dissimilar words. While the network simulated the reduction of priming found in high frequency words, this effect is a feature of long rather than short term priming - Forster and Davis (1984) reported finding no frequency effect for words primed using the masked priming technique.

McClelland and Rumelhart (1986) also used extra training on individual items to model priming, in a distributed model of memory. The model assumed (although did not implement) decay in the weight changes, so that initial changes in performance from extra training on a single item would be large but would reduce over time. The model was intended to simulate repetition priming over long intervals. The network used in this case had two layers, and so was not required to develop its own internal representations over intermediate processing units. The network was trained to autoassociate binary vectors representing word label and visual feature information about exemplars of certain concept prototypes. The network used a “cascade” mechanism (see Chapter 6) to allow activation to build up in the network, thus allowing the simulation of reaction time data. Results showed priming effects via extra training for both previously learned exemplars of categories, and unfamiliar exemplars (on their first versus second presentations). As with the low frequency condition in the O’Seaghdha et al model, priming was greater for unfamiliar or low frequency exemplars. 

Interestingly, in the McClelland and Rumelhart model, little disruptive effect of extra training was noted. This was for two reasons. Firstly, for a given concept, all exemplars were based around the same prototype: within a concept no substantially inconsistent knowledge was presented to the network which could cause mutual disruption between mappings. Secondly, different concepts had at least partially orthogonalised (or non-overlapping) pattern vectors. In a two layer network, this allowed different concepts to store much of their information over different weights, reducing the opportunity for concepts to interfere with each other (see Chapter 11). However, words to be stored in the human lexicon do not conform to this description: they have much in common with each other. Further, were this model to have used an intermediate layer of hidden units, as used in the orthographic autoassociator in Seidenberg and McClelland’s model, this would deny the network the opportunity to carefully segregate its knowledge in the way open to a two layer network.

Conclusions.

We have seen two approaches to modelling priming in networks using distributed representations: persisting activation from previously processed items, and extra training on specific items. The approaches taken by the different authors are summarised in Table 5.2. Persisting activation was used to model short term priming effects (Masson, 1995; Plaut, 1995a; Moss et al, 1994; Bullinaria, 1995b), while weight change was used to model both short term priming effects (O’Seaghdha et al, 1992; Seidenberg and McClelland, 1989) and long term priming effects (Becker et al, 1993; McClelland and Rumelhart, 1986).

Table 5.2: Summary of approaches taken to simulating priming effects in distributed networks.

Study
Type of Priming Modelled
Method Used

Seidenberg and McClelland (1989)


Short term phonological
Weight Change (backpropagation)

Masson (1995)


Short term semantic
Persisting Activation

Plaut (1995a)


Short term semantic and associative
Persisting Activation

Moss, Hare, Day, and Tyler (1994)
Short term semantic and associative
Persisting Activation

Bullinaria (199b)
Short term semantic and associative
Persisting Activation

Becker, Behrmann, and Moscovitch (1993)
Long term repetition, semantic, and form-related
Weight Change (Hebbian) of ‘fast’ weights

O’Seaghdha, Dell, Peterson, and Juliano (1992)
Short term form-related
Weight Change (backpropagation)

McClelland and Rumelhart (1986)


Long term repetition
Weight Change (delta rule with weight decay)

Distributed representations appear to have the following implications in attempting to model priming:

1. Similarity. Priming on item X will help later performance on item Y, if item X is similar to Y.

2. Dissimilarity. By the same token, priming on item X will hinder later performance on item Z, if X is different from Z.

3. For models using distributed internal representations, performance on a single word cannot be changed in isolation from the network’s performance on other items, since the same system resources are involved in the processing of all items.

Similarity appears to be of benefit in modelling semantic and form-related priming over short intervals. Dissimilarity appears to be of benefit in modelling the inhibitory effects of encountering consecutive naming trials which have inconsistent letter to sound mappings. On the other hand, both similarity and dissimilarity appear to present problems in modelling repetition priming effects over longer intervals. Over long repetition lags, the human data show that performance on words is enhanced in apparent isolation from other words, however similar they are. In the same way, a nonword gains enhancement in apparent isolation from other lexical items, at lags of up to 10-15 items.

Since short term changes in the performance of a network are best captured by changes in activation state, intuitively one might think that persisting activation seems the more appropriate way to model priming over short intervals. Consequently one might then imagine extra training on individual items would be more appropriate to model priming over longer intervals, perhaps for nonwords as well as words, (although if we are to adopt this scheme, we will later need to address how this can be squared with the qualitatively different weight change regime used for learning the network’s knowledge in the first place).

While this scheme takes a position on the mechanism underlying priming, it doesn’t comment on where in the distributed word recognition framework we should expect to locate the various effects. In the context of this project, our interest in priming is with regard to its use in the lexical decision task, where it might reveal the nature of the underlying lexical representations in the bilingual’s language system. The priming effect of interest is thus long term. However, as the review of the Seidenberg and McClelland account of lexical decision suggested, it is not clear whether we should expect the orthographic autoassociator or the orthography-to-semantics network to be principally involved in this task. In conclusion, this chapter generates at least three questions:

a) How should we model priming effects in distributed networks: with persisting activation or with weight change?

b) Where in the Seidenberg and McClelland framework should we expect the various priming effects to be found?

c) Is it possible for a distributed network to prime performance on a single item, in isolation from items similar / dissimilar to it?

In the next chapter, we introduce a set of connectionist simulations to address these three questions.

Chapter 6.

Connectionist simulations of lexical priming in monolinguals.

Introduction.

This chapter will comprise 5 sections. We have identified two sets of options for modelling priming in a distributed framework. We can depict this situation as a two-by-two matrix, shown in Table 6.1, comparing the location of the priming effect and the mechanism causing it
.



Table 6.1: Matrix of priming effects.


Location



Mechanism


Orthographic Autoassociator
Orthography to Semantics Network

Persisting

Activation
Section 1
Plaut (1995a)

Weight

Change
Section 2
Section 4

In this chapter, we will look at a number of connectionist simulations that examine the characteristics of the priming effects caused by each mechanism in each location.

In Section 1, we will examine the nature of the priming effects that arise when activation persists between trials in a network which has been trained to autoassociate orthographic lexical information.

In Section 2, we will examine the nature of priming effects that arise when the network’s weights are changed in response to processing the prime, again in a network trained to autoassociate orthographic lexical information.

The next step would be to examine the priming effects caused by activation persisting in a network trained to map between the orthographic codes for words and their meanings. However, given that Plaut (1995a) has already examined this combination, we will not replicate it here. In Section 3, we will however examine the claim made by Plaut (1995a) and by Plaut, McClelland, Seidenberg, and Patterson (1996) that generalisation is eliminated in such a network when meanings are represented using a sparse coding scheme. A reduction in generalisation implies that any manipulations affecting a given mapping will be less likely to affect the mappings of other similar items. This claim is thus highly relevant to the question of whether long term repetition priming can be isolated to single words. 

In Section 4 we will examine the final combination, the nature of the priming effects that arise in the orthography-to-semantics network when the network’s weights are changed in response to processing the prime.

Lastly, in Section 5 we will attempt to draw together an integrated account of word priming effects in the Seidenberg and McClelland framework. We will then take this account forward to the next chapter to address our questions with regard to bilingual lexical representation.

The lexicon.

In these simulations, our interest is in the computational principles underlying that framework - mapping between codes using distributed representations. At this stage, we will not be committed to any particular coding scheme or training regime used by Seidenberg and McClelland (1989) or Plaut et al (1996). For the sake of transparency, we will used a simple coding scheme that should suffice to explore the characteristics of priming effects.

For practical reasons, the set of words and possible nonwords used in these simulations was small, so that the priming effects between all possible combinations of primes and targets could be examined. As in Chapter 4, simple three letter Consonant-Vowel-Consonant words were used. Words were constructed as follows. Any of 5 Consonants could appear in the first position (b, g, p, s, t); any of 5 Vowels could appear in the second position (a, e, i, o, u); any of 4 Consonants could appear in the third position (d, n, r, w). There was thus a potential set of 5x5x4=100 lexical items, of which 20 were defined as words in the lexicon. Words were chosen arbitrarily, with the constraint that they should cover most of the input space. This allowed us to examine priming patterns between items depending on their similarity, where that similarity can vary quite widely. The word set is shown in Table 6.2.

The 20 existing words were given semantic codings, representing nominal semantic features. These semantic patterns were coded over 40 units. They were randomly generated, where each unit had a probability of 0.1 (or 10%) of being on and at least 2 units had to be active (after Plaut, 1995a). The random generation of semantic codes for the words ensured that the relationship between word forms and their meanings was arbitrary.

Table 6.2: Word set used in the monolingual priming simulations, comprising 

3 letter CVC combinations.

BAD
POW

BER
PUR

BIR
SAD

BOR
SEW

GAR
SOD

GIN
SUN

GOD
TAN

GUN
TAR

PED
TID

PIW
TON

Notes:


1st Consonant from:
b, g, p, s, t.

2nd Vowel from:
a, e, i, o, u.

3rd Consonant from:
d, n, r, w.

Section 1:
The simulation of priming by Persisting Activation in the Orthographic Autoassociator.

Seidenberg and McClelland (1989) suggested that for certain stimulus sets, subjects could base their performance in the lexical decision task on the familiarity of the lexical string presented to them. Familiarity could be computed by a network trained to autoassociate orthographic information, prior to any need to generate other codes in the system. In their framework orthographic autoassociation was achieved using a 3-layer feedforward network. If this network is principally involved in performing lexical decision, it may be responsible for generating some of the priming effects found in word recognition. In this section, we consider what pattern of effects would be produced by allowing activation to persist in the network between the presentation of the prime and the presentation of the target.

A three layer network was trained with the backpropagation learning algorithm to autoassociate the orthographic codes for the 20 words in the lexicon. The words were represented at the input layer and output layer using a single unit to code the presence of a letter in each position in the word. A unit was turned on (with a maximum activation of 1.0) if that letter was present in the word. The network thus had 5+5+4=14 input and output units. The network initially had 5 hidden units, so that it was required to form compact internal representations of the words in the lexicon. The architecture is shown in Figure 6.1, which also shows the framework to be used in the orthography-to-semantics simulations in Section 4.

Network performance was examined at three points in training, for low, medium, and high amounts. These corresponded to 100, 250, and 750 epochs of training, with a learning rate of 0.5 and a momentum of 0. The network’s performance on the word set at these three points, as well as its ability to reproduce the full set of nonwords, is shown in Figure 6.2. These results are averaged over three runs of the network, with weights initially randomised between ±0.5. The graph shows that by 100 epochs, the network was reproducing the word set within an average root mean squared error of less than 0.2.

Figure 6.1: Framework for the Monolingual Priming Simulations.


Figure 6.2: Performance of the Orthographic Autoassociator at three levels of training (3-layer network, 5 hidden units, lrate = 0.5).

The implementation of Persisting Activation in a feedforward network.

In order to examine priming due to persisting activation, we must test the model in a different mode to which it has been trained. In training mode, the network’s output activations are derived in a single set of calculations. However, in testing mode, the network’s processing must extend through time, to allow the presentation of prime and subsequent presentation of target. In order to achieve this extension, the activation values for a particular pattern were clamped on the input units, and activation was allowed to build up on the hidden and output units over subsequent processing cycles, according to the following formula:









(1)

where neti is the net activation arriving at unit i on time slice t, j indexes the units connected to unit i, wij indexes the weights from all units j connected to unit i, aj indexes the activation of all units connected to unit i (where activation can vary between 0 and 1), R is a constant between 0 and 1 determining the rate of build up of activation, and neti(t-1) is the net activation arriving at unit i on the preceding time slice. This mechanism, called the cascade activation rule (Cohen, Dunbar, and McClelland, 1990), allows activation to build up in the network so that it asymptotes at the value it would have reached in a single pass of calculations using the standard network processing algorithm. For a small value of R, the rate of build up is slow, while for a large value, it is fast. If R is set to 1, the formula becomes equivalent to calculating hidden and output unit activations in a single processing step. In the following simulations, R was set to a value of 0.05. Using this rule, patterns which are well learnt by the network produce strong activations on the output units in fewer processing steps than those which are weakly learnt.

The cascade activation rule includes a decay term, such that activation in the network rapidly drops off when activity no longer propagates up from the input units. This becomes clearer if we re-write the equation as follows:







(2)

Thus the net activation of unit i is given by three terms: its activation on the previous time slice, plus some amount of the weighted activation arriving from other units, minus some amount of its activation on the previous time slice. In the absence of the middle term, the last term will cause the activation of unit i to decay exponentially.

For a given input, the speed of the network’s response can be derived by implementing a criterion. For example, one might take the response to be when the activation of all of the appropriate output units has exceeded a level of 0.5. The number of processing cycles required by an input pattern to generate a response that exceeds the criterion can be used to derive a reaction-time-equivalent for that input. However, there are a number of problems with using a static criterion in a 3-layer network implementing the cascade rule (see Bullinaria, 1995a). The most relevant issue in the current context is how to deal with inputs which don’t generate an output pattern that exceeds the response criterion. This is likely to be the case when the network is tested on the nonword set on which it has no training. The output generated by the network is likely to include weaker activations on the output units than those generated by a word. It may be the case that, for a given nonword, no output units in a given letter position exceed the 0.5 activation criterion (even when the correct letter may be the most active in that position). How should the network generate a response in this situation? 

One solution is to allow the response criterion to drop after a certain number of processing cycles has elapsed. This will allow eventual recognition of sub-threshold activations. However, the particular way in which the response criterion declines will affect the pattern of response times, and it is not clear how one might determine the appropriate function that describes how the criterion should change over time. Another solution is to have a probabilistic response mechanism, whereby a unit’s distance below or above the criterion on a given time step generates a probability that this letter is selected as the response for that position. Even if activations are low, a response should eventually be generated. This was the approach taken by Cohen et al’s implementation of the cascade rule in their model of the Stroop effect. However, given the number of comparisons required in the priming simulations (10,000 per run of each network), it was thought impractical to introduce a probabilistic response mechanism: this would have required further replications in order to derive the central trend of the results. A third possible solution is to take the network’s response to be the point at which the activations on the output units have stabilised. Activation builds up and finally asymptotes on the output units after a certain number of cycles. The point of asymptote may be taken as the time of response. It is this method that was used in the following simulations. Specifically, the network’s response was taken when the output vector had not changed by more than 1 part in 1000 over 10 consecutive processing cycles. 

When the target in a priming trial is a word, the criterion method can be used, since the appropriate output units are all likely to exceed the threshold. Simulations were run to compare the criterion and asymptote methods. These demonstrated similar patterns of results using the two approaches.

One further addition is required to implement the cascade mechanism in a feedforward network. If output units have a positive resting activation prior to any activation propagating up through the network, they can trigger an immediate response without processing the input. To encourage output units to have a resting activation close to zero, a ‘blank’ training pattern was included. This comprised all zeroes on the input and all zeroes on the output. Thus when the input to the net is zero, the output should be zero as well.

Priming procedure. 

Normal reaction times for each word were derived by measuring the number of processing cycles taken for the activation on the output units to reach asymptote. Priming was simulated by clamping the input pattern for the prime onto the input units for 9 processing cycles. Next, the input pattern for the target was clamped onto the input units, while allowing the existing activation pattern in the network to persist. The new number of processing-cycles-to-asymptote was then derived, allowing the size of the priming effect to be calculated.

Nine priming cycles was chosen somewhat arbitrarily as the duration of exposure of the prime: a ball-park human reaction time of 700ms and priming effect of 100ms were assumed, or approximately 14% of the processing time. One of the words was chosen, and the number of priming cycles required to produce a 14% improvement in processing time on this item was taken to be the exposure of the prime. This procedure allowed a benchmark which could be applied in the simulations in Sections 2 and 4. The 9 cycle exposure of the prime was used in all conditions in Section 1.

To examine the performance of the network on the priming task, every possible input was used to prime every possible other input, whether word or nonword. This produced 100x100=10,000 prime-target pairs. Our main interest here is the extent to which priming on a given item changed performance on other items that are similar to it. A given input may or may not exist in the lexicon. Thus four types of priming are possible: word-to-word priming, nonword-to-nonword priming, word-to-nonword priming, and nonword-to-word priming. The prime may be identical to the target, it may be 1 letter different, 2 letters different, or have no letters in common with the target. Table 6.3 shows the number of comparisons of each type, split by Priming Type and Prime-Target Similarity, for the 20 words and 80 nonwords. Each of the 10,000 comparisons employed the testing procedure outlined above. Responses from the network were typically of the order of 50-100 iterations of activation through the network. Thus these simulations were computationally expensive. Given that several conditions were run to explore the implications of various parameters in the model, practical considerations meant that only 3 replications were run using different initial random seeds. However, in some conditions, large numbers of comparisons made up each measurement. In the following results, means and standard errors will be provided to illustrate the patterns of priming effects. We will discuss the reliability of the patterns at the end of this section.

Table 6.3: Number of different comparisons between prime-target pairs.


Prime

Target
Word

Word
Nonword

Nonword
Word

Nonword
Nonword

Word
Totals

Relation



Same

20
80


100

1 different

24
684
196
176
1,100

2 different

162
2562
638
638
4,000

3 different

194
3074
766
766
4,800






Totals
400
6400
1600
1600
10,000

Results.

Since we are interested in similarity effects between words, we will start with a condition which encouraged generalisation in the orthographic autoassociator. Broadly speaking, a network has superior generalisation earlier in training, and when it employs few hidden units compared to the number of patterns it has to learn. Figure 6.3 shows the patterns of priming found in the network with 5 hidden units, after 100 epochs of training. This graph shows the amount of priming (in reduction of iterations to asymptote) found when the prime is identical to the target, when it is one letter different from the target, two letters different from the target, and when the prime is three letters (completely) different from the target, averaged over all potential words and nonwords. Values are shown for the four types of priming, word-to-word, nonword-to-nonword, word-to-nonword, and nonword-to word, from left to right. Error bars are included which show the standard errors of these values over the three runs of the network.

Figure 6.3: Priming effects in the Orthographic Autoassociator, using Persisting Activation. Scores show the difference between performance on an item when primed and unprimed. Positive values indicate facilitation. Results are averaged over three networks. The network had 5 hidden units and was trained for 100 epochs.


The results show that repetition of an item causes its subsequent performance to be facilitated, but that facilitation also occurs for targets that are similar to the prime. This generalisation on the basis of similarity is most marked for words. Both targets that are one letter different and two letters different from the prime show facilitation, although this is reduced when the target is a nonword. Facilitation on the basis of similarity occurs both from nonwords to words, and to a lesser degree, from words to nonwords. A comparison of priming between words and nonwords shows that nonwords serve as better primes for words than vice versa. This reflects the fact that the network’s internal representations are organised to reproduce orthographic information for words: nonword inputs are seen by the network as blurred versions of word inputs. Finally, priming using an item that shares no letters with the target causes inhibition relative to the neutral condition.

In psychological terms, this pattern of results shows characteristics of form-related or orthographic priming found over very short intervals with masked presentation of the prime. Form-related priming shows facilitation on the basis of degree of similarity of prime to target, including priming between words and nonwords. The strong inhibitory effect from unrelated primes maybe a misleading simulation result, since it is relative to a baseline condition starting from zero. Plaut (personal communication, August, 1995) suggests that the system may not have a neutral ‘zero’ baseline state against which these inhibitory effects could be identified. He reports that his semantic and associative priming model also exhibited inhibition from unrelated primes relative to the performance from a ‘zero’ state in the network. He comments:

“But if, after processing a neutral prime (e.g. a nonword or the word READY) the network tends to settle to near-binary states, then there won’t be any substantial ‘inhibition’ relative to the state it is in after an unrelated word. This might also be true of processing a target in the absence of any prime. The idea is that the system is never in a neutral state - it is always moving among interpretations (attractors).”

In short, it may be more appropriate to think of the inhibition found in the unrelated (3 different) condition as itself constituting the baseline recognition time. Comparatively, this would serve to accentuate the similarity-based facilitatory effects found between related prime-target pairs.

The effect of amount of training and number of hidden units.

We may examine the robustness of these effects by varying certain parameters in the model. Patterns of priming were examined at three different levels of training: 100 epochs, 250 epochs, and 750 epochs; and for three other architectures: a two-layer network with no hidden unit layer, a three-layer network employing 10 hidden units, and a three-layer network employing 15 hidden units. The different architectures were compared at a medium level of training (250 epochs). Autoassociation is a linearly separable mapping problem and thus learnt more readily by a two-layer network. In order to match the performance of the two-layer network against the three-layer nets, a reduced learning rate of 0.065 was used. Figure 6.4a-c shows the patterns of priming at different levels of training. Figure 6.5a-d shows the patterns of priming for the four different architectures. Again, these results are averaged over three runs of each network, and included standard error bars.

Results.

The facilitation effect an item experiences by its repetition - of 9 iterations - remains the same however much training the network experiences. This is true by definition, and is taken to reflect a fixed duration of exposure of the prime. 

If degree of training on an item is seen as equivalent to its frequency, then this result suggests that the facilitation effect is independent of word frequency. The 9 iteration exposure is independent of the network’s level of performance. It is sensitive only to the length of presentation of the prime to the system (in processing cycles). Forster and Davis (1984) have also reported that form-related priming does not show sensitivity to word frequency. With further training, the similarity gradient of priming on related items becomes sharper, particularly for word-to-word priming. There is less priming across the word/nonword boundary, and facilitation is confined more to the item itself rather than items similar to the prime. This is a consequence of a reduction in the generalisation ability of the network with further training, as its representations are refined. However, if the 3-different condition is taken as the baseline, there is still a similarity-based facilitation effect in the well trained network.

The comparison of the priming effect across architectures revealed two points. Firstly, the two layer network showed the most uniform similarity-based priming effects, and little indication of inhibitory effects from unrelated primes. Secondly, increasing the number of hidden units in the three layer network didn’t appear to have much impact on the pattern of priming between items. However, increasing the number of hidden units did increase the reliability of the priming effects, as witnessed by the smaller error bars in Fig. 6.5 c) and d). While there was large variability in the results for the 5 hidden unit network, the conditions with 10 and 15 hidden units showed a similar pattern of results with much more reliability.

Why should a small number of hidden units cause variability in the size of priming effects in the autoassociator? The network must represent a number of quite different words over its hidden units. A small number of hidden units causes the network to develop convoluted and internally inconsistent representations. The use of more hidden units leads to smoother internal representations, and thus more consistent priming results. This point can be demonstrated by the following result. Let us assume that similarity defines the size of the priming effect between a prime and a target. Then if one primes the network with item A and tests it with item B, one would expect a similar priming effect when priming with B and testing with A - the similarity is the same in either case. However, an examination of this measure for the 5 hidden unit network revealed a correlation of A-to-B values with B-to-A values of only 0.02! There was no relation between the activation path through the network from A to B with that from B to A! However, the same measure in the 15 hidden unit condition gave a correlation of 0.58, reflecting its more consistent internal representations. (For reference, the Weight Change method which we shall look at in the next section, produced much more symmetrical priming effects. The correlations between A-B and B-A effects were above 0.95 for most conditions).

Figure 6.4: Comparison of priming effects in the Orthographic Autoassociator, using Persisting Activation, for different amounts of training. The network had 5 hidden units and was trained with a learning rate of 0.5 and momentum 0. (N=3).

a) 250 Epochs of Training.


b) 750 Epochs of Training.


Figure 6.5: Comparison of priming effects in the Orthographic Autoassociator, using Persisting Activation, for different numbers of hidden units. Each network was trained for 250 epochs, with a learning rate of 0.5 and momentum 0. (N=3).

a) Two layer network (no hidden units).


b) 5 hidden units.


c) 10 hidden units.


d) 15 hidden units.


Conclusion.

This set of simulations modelled priming through persisting activation in a distributed network which had been trained to perform orthographic autoassociation. The results demonstrated a number of features found in form-related priming at very short prime-target intervals. When the network moved directly from the activation state left by processing one input to processing on a different input, the priming effect was dependent on degree of similarity between the two inputs, and insensitive to the frequency or (to a large extent) the word/nonword status of the string. The similarity-based effects were maximal in the two-layer network, which also showed the least inhibition between unrelated prime-target pairs.

Section 2: The simulation of priming by Weight Change in the Orthographic Autoassociator.

We now turn to look at the pattern of results that is produced by implementing priming through weight change in the orthographic autoassociator. Priming will now be simulated by training the network for some further number of cycles on an individual item, the prime, and then deriving the change in accuracy with which the target is reproduced on the output units.
Procedure.

For each prime, the trained network weights for the relevant condition were loaded. The prime was presented to the network, and the error score for its autoassociation was derived. The weights for the network were then changed, using the backpropagation algorithm, and the same learning rate, 0.5. The size of the weight change involved in priming was calibrated using the same method employed in Section 1. The test word was presented to the network, and the weights updated; this process was repeated until the error score was 14% lower than its initial value. This required 12 presentation and weight update cycles for the prime, using a learning rate of 0.5.

The performance on all possible word and nonword targets was evaluated, after priming using all possible words and nonwords. The error for a target item in the primed state was compared to its base rate error. The difference in error scores represented the degree of priming for that item. Error scores were used in place of iterations to asymptote. This is because the activation state of the network was not altered during recognition of the target. Implementation of the cascade rule would have yielded identical results, but would have been more computationally expensive.

Results.

Unlike in the Persisting Activation condition, the priming results for Weight Change in the Orthographic Autoassociator produced very small variances across all conditions. Figure 6.6 shows the priming each item gains from itself, from items 1 letter different, 2 letters different, and 3 letters different, for the four types of priming (word-to-word, nonword-to-nonword, nonword-to-word, and word-to-nonword). The patterns are shown for networks with three levels of training, 100 epochs, 250 epochs, and 750 epochs. Figure 6.7 shows the patterns of priming found in a two layer network, and in a three layer network with 5, 10, and 15 hidden units. The latter networks were trained for 250 epochs. The two layer network used a reduced learning rate of 0.065 (see Section 1).

The results for word-to-word priming show that, somewhat contrary to expectation, facilitation was focused mostly on the word itself, and not those words similar to it. While generalisation of the facilitation effect to similar words was greater in the 2-layer net, focusing of facilitation to the primed item was still marked compared to the persisting activation condition. We will save consideration of why this effect arises until Section 5.

Secondly, the facilitation effect a word experienced by its repetition reduced with the amount of training the network experienced. This may be interpreted as a reduction in priming with increasing frequency, an effect found in long lag repetition priming. Thirdly, under all conditions, priming of nonwords was much larger than that found for words. This is unsurprising, since the network is being trained to autoassociate an item on which it has previously received no training. Initially it will reduce its error quickly. The nonword facilitation effect appeared to be the most salient characteristic of this simulation. Indeed when the 15 hidden units network was trained up to 750 epochs, the facilitation a nonword caused to itself and other similar nonwords was the only priming effect present. Finally, the nonword-to-nonword, word-to-nonword, and nonword-to-word conditions all showed a form-related facilitation effect to targets that shared letters with the prime.

Figure 6.6: Comparison of priming effects in the Orthographic Autoassociator, using Weight Change, for different amounts of training. The network had 5 hidden units and was trained with a learning rate of 0.5 and momentum 0. (N=3).

Values show <Unprimed - Primed> error scores. Positive values indicate facilitation.

a) 100 Epochs of Training.


b) 250 Epochs of Training.


c) 750 Epochs of Training.


Figure 6.7: Comparison of priming effects in the Orthographic Autoassociator, using Weight Change, for different numbers of hidden units. Each network was trained for 250 epochs, with a learning rate of 0.5 and momentum 0. (N=3).

a) Two layer network (no hidden units).


b) 5 Hidden Units.


c) 10 Hidden Units


d) 15 Hidden Units


Conclusion.

This simulation examined priming in the Orthographic Autoassociator using Weight Change to enhance performance on the prime. The results produced aspects of priming found in long term word repetition priming (interaction with word frequency, word priming on the word alone and not other similar words) and short term form-related priming (similarity-based priming, for all but word-to-word priming). However, it also produced a substantial advantage for nonword repetition priming over word repetition priming, which is not characteristic of human empirical data. In fact it appears more appropriate to explain this effect as the network learning a new word, rather than in terms of priming. In short, this simulation showed aspects consistent with short but not long term priming, and other aspects consistent with long term priming but not short term. We might suggest that the most plausible candidate for priming in the Orthographic Autoassociator is a short term, form-related effect, produced by persisting activation between presentation of the prime and target.

Section 3: The elimination of generalisation in the Orthography-to-Semantics network.

“It is just plain obstinacy that compels Seidenberg and McClelland to try to map from orthography to semantics without an intervening lexicon. Especially since the alternative is so simple to arrange, and avoids a lot of awkward problems.” (K. Forster, personal communication, July, 1996).

In Sections 3 and 4 we will consider the nature of the priming effects that might arise in the orthography to semantics network, within the Seidenberg and McClelland framework. Fortunately, Plaut (1995a) has already demonstrated that persisting activation in such a network demonstrates characteristics found in semantic and associative priming over short intervals. In Section 4 we will examine the implications of modelling priming using weight change in a network mapping between orthographic and semantic codes. In this section, we will address a potentially serious problem with the endeavour of using a network to map from orthographic information directly to semantic information, as suggested by the above quote.

The problem with using a distributed network to map between orthographic and semantic codes is as follows. A connectionist network employs similarity-based processing. A network maps similar inputs to similar outputs. It is through this quality that networks exhibit generalisation. However, similarity-based generalisation is likely to be a liability in mapping between orthography and semantics. Not only do similar words not generally have similar meanings, but letter strings similar to words do not possess meanings at all. Possession of meaning is not graded but absolute. Somehow, a network must learn to output meanings for words, but generate no output for items very similar to words. Moreover it must learn this distinction without explicitly training on it. In general, people do not spend time contemplating the meaninglessness of random letters strings. 
Coltheart, Curtis, Atkins, and Haller (1993) used this argument to criticise the Seidenberg and McClelland account of performance in the lexical decision task on the grounds that word-like nonwords might produce spurious “pseudo-meanings” on the semantic output units (had they been implemented in that model). For example, the nonword DEG is very similar to the word DOG. The network might therefore produce an output on the semantic features for the string DEG that was similar to that for DOG. On reading DEG, we might think we had recognised a concept that was a little ‘dog-ish’. Now in Seidenberg and McClelland’s account of lexical decision, when orthographic and phonological familiarity cannot distinguish words from nonwords, semantic information must provide definitive knowledge about the lexical status of an input string. If an input string generates a semantic code, then it is a word. But if word-like nonwords also produce pseudo-meanings in this route, then the model has no definitive way to separate words from nonwords. This would undermine  the model’s claim that it can distinguish between words and nonwords without building such information into the structure of the network in the form of word units.

In response to this criticism, Plaut, McClelland, Seidenberg, and Patterson (1996) responded that they envisaged the semantic representations for words to be relatively sparsely coded. Each word would activate few of the possible semantic features, and each semantic feature would participate in the meanings of a small percentage of words. Under these conditions, they claimed that the generalisation of pseudo-meanings would be reduced. It does seem true that in general, a given concept is defined by very few of the set of all possible semantic features. Moreover if we follow the neural metaphor, sparse representations appear to be a characteristic of the brain (Baddeley, in preparation). However, it remains to be shown that sparseness of semantic representations is alone sufficient to eliminate generalisation of meanings to nonwords, and make words entirely discriminable from letter strings. This will be the aim of the following simulation.

Network.

A network was trained to produce meanings for words, and its semantic output was then evaluated when nonwords were presented. Varying levels of sparseness were used to represent the words’ meanings. Although Plaut simulated the orthography to semantics route using a distributed attractor network, we will use a three layer feedforward network for comparison with the orthographic priming simulations in the previous sections. The possible differences between the behaviour of attractor networks and feedforward networks will be considered later.

The network had to learn to map each word to its meaning. Meanings were represented as a string of nominal semantic features. Based on the assumption that a word’s meaning has no relation to its orthographic form, the semantic features for each of the 20 words were generated at random, under certain constraints. Meanings were binary strings, where each feature had a certain probability of being active in a given string. Semantic representations were generated at three levels of sparseness:

· in the first condition, the semantic vector for each word was 40 units long, and each semantic feature had a 10% probability of being active;

· in the second condition, there were 60 output units, and each semantic feature had a 5% probability of being active;

· in the third condition, there were 100 output units, and each semantic feature had a 3% probability of being active;

To avoid the possibility of meanings being generated with no semantic features active, a constraint was introduced that at least two units had to be active in any binary string. Since potential patterns of generalisation would be highly sensitive to the semantic codings generated for the word set, three different versions of each semantic coding were generated, for each level of sparseness. In sum, 3 sets of meanings were generated for the twenty words, with codings at each of 3 levels of sparseness: 10%, 5%, and 3%.

A three layer feedforward network was then trained to map between the orthographic codes for the words, and the relevant semantic codes. The network had 14 input units and either 40, 60, or 100 output units to represent meanings. Initially 24 hidden units were used. The network architecture is included in Figure 6.1. The network was trained for 750 epochs, with a learning rate of 0.5. The network was then tested by presenting the 20 words and 80 nonwords, and recording the output activations on the semantic units. A semantic output unit was defined as being ‘on’ if its activation exceeded a threshold of 0.5. The mean number of active semantic features was calculated for words and nonwords. Each network was run three times with different random seeds.

Results.

In the results, we wish to check how distinguishable words are from nonwords. A meaning is defined as a binary code where at least two semantic features are active. The majority of words had more than two features active. Figure 6.8 shows the proportion of words and nonwords which generated semantic codes with more than two features exceeding threshold, for the three levels of sparseness. Each value averages over the 3 runs of each of the 3 versions of the coding.

There are three points to make. Firstly, as Plaut et al suggest, it is indeed the case that an increase in the sparseness of the codings reduces the generation of pseudo-meanings by nonwords. Secondly, even a sparseness level of 3% allowed roughly a quarter of the nonwords to generate pseudo-meanings with more than two features active. Indeed, while only 3.3% of words had more than 5 semantic features active, 2.6% of nonwords also produced meanings with more than 5 active units. Thus while it seems straightforward to reduce the network’s generalisation of meanings from words to nonwords, it seems difficult to eliminate it entirely. Thirdly, it would not be possible to increase the sparseness level much further and maintain the notion of distributed semantic representations. With a sparseness level of 3% over 100 units, each word will on average produce 3 active features (a little more due to the minimum-of-2 constraint). For the entire word set, this is only 60 active features
. Any lower overlap of meanings would be tantamount to a localist coding of meaning.

The feedforward networks in these simulations employed 16 hidden units. The relationship between orthography and semantic is entirely arbitrary, and thus a particularly hard one for a network to learn. Perhaps it is the case that with only 16 hidden units, the network was under-resourced in learning these mappings? As a result, the hidden unit representations may have been forced to abstract information about the properties of the word set and map these to the semantic codes. This would have emphasised input similarity at the hidden unit level, and encouraged generalisation of meanings to nonwords strings. This possibility was tested by varying the number of hidden units in the network, for the 10% level of sparseness. A 2-layer network, and 3-layer networks with 8, 16, 24, and 40 hidden units were trained on each version of the 10% coding, and nonword generalisation once more tested. Each network was run with 3 different random seeds. Figure 6.9 shows the mean proportion of words and nonwords generating more than 2 active features.

The results once more show a reduction in the number of active features generated by nonwords, as the number of hidden units increases up to 16. Beyond this number, however, additional hidden units did not appear to further reduce generalisation. The 2-layer network appeared particularly inappropriate for generating semantic activation only in the presence of words. We may conclude that the mapping between orthography and semantics demands internal representations, if not word units.

Figure 6.8: Semantic activity for words and nonwords in the Orthography to Semantics network, for increasing levels of sparseness in the semantic codes.


Discussion.

It is true that some nonwords (e.g. slithey) can elicit semantic activation if they are closely related orthographically or phonologically to real words (Bullinaria, 1995b). Indeed, Bourassa and Besner (in preparation) have recently claimed to demonstrate that nonwords can produce semantic activity sufficient to be measured using a semantic priming paradigm (e.g. masked presentation of DEG caused a significant facilitation for lexical decisions on word targets semantically related to DOG, such as CAT), although this result is still controversial. However, in the lexical decision task, without time constraints subjects can always reliably discriminate between words and nonwords. Any model must ultimately show that words can be discriminated from nonwords.

With the preceding results, we have demonstrated that sparsely coded semantic representations can reduce the spurious semantic information produced by nonwords. However, they cannot eliminate it, and certainly in the current simulation, words were not discriminable from nonwords. Plaut et al (1996) suggested that the use of a distributed attractor network with sparse representations would also help reduce generalisation for nonwords. Under this view, with sparsely represented semantics an input has to be very close to a word in order to fall into the attractor basin for that word’s meaning. Even a slightly different letter string might not make it into the correct region of state space to enter the attractor basin. However, in 1993 Plaut and McClelland showed that distributed attractor networks can exhibit large degrees of generalisation: in learning the mapping between orthography and phonology, Plaut and McClelland claimed that an attractor network could generalise its pronunciation knowledge sufficiently to allow it to name previously unseen nonwords, at levels comparable to humans. Without further simulations, it cannot be guaranteed that the use of attractor networks will eliminate unwanted generalisation.

Figure 6.9: Semantic activity for words and nonwords in the Orthography to Semantics network, for increasing numbers of hidden units.


Plaut (in press) has recently produced results of simulations modelling the mapping of orthography to semantics. Plaut used a strictly feedforward network, which was trained to map the orthographic codes for the non-homographic words in the Seidenberg and McClelland English monosyllabic word set (2985 words), to randomly generated meanings. The orthographic word forms were represented using Plaut et al’s (1996) coding scheme. In line with the results generated in this Section, Plaut used sparsely coded semantic representations (10% of 200 features active for each meaning), and a large number of hidden units (1000 compared to 100 this same model used to map between orthography and phonology). Once more, the discriminability of words and nonwords was at stake. To perform this discrimination, Plaut chose to use a measure related to the degree to which the output units were in a binary (on or off) state, which he termed Semantic Stress. He explained this as follows:

“Nonwords are novel stimuli that share graphemes with words that have conflicting semantic features. As a result, nonwords will typically fail to drive semantic units as strongly as words do, producing semantic patterns with much lower average stress. Accordingly, the average stress of semantic units, here termed simply semantic stress, should provide an adequate basis for performing lexical decision.”

Somewhat curiously, this measure generates high readings not only for words but also for nonwords which activate no semantic features at all. Low stress values are generated by pseudowords, which partially activate a number of semantic features. As a measure for use in lexical decision, semantic stress is deliberately weighted to offer discriminability between words and pseudowords. The distributions Plaut derived for the various types of stimuli are shown in Figure 6.10.

Figure 6.10: Plaut (in press), Semantic Stress distributions for words and nonwords in a network mapping between orthographic and semantic codes for the Seidenberg and McClelland (1989) word set.

The use of the semantic stress measure, along with sparsely coded semantics and a large number of hidden units, reduced the overlap between words and nonwords. However, importantly semantic stress was not sufficient to absolutely distinguish the two. The model cannot refute the claim that very word-like nonwords will generated semantic activation equivalent to that generated by, say, low frequency words.

Bullinaria (1995b) has made two important points with regard to using semantics to model lexical decision in distributed network. Firstly, he points out that realistic semantic representations are unlikely to have equal numbers of activated micro-features for every word. This calls into the question the feasibility of a “number of features active” threshold approach to performing lexical decision, that is implied by Figures 6.8 and 6.9. Secondly, he suggests that there is no good reason to think that semantic representations will have binary features for each word - indeed the shades of meaning and variable contexts present in word comprehension argue against it. This calls into question the feasibility of the semantic stress measure used by Plaut. In place of these approaches, Bullinaria offered a model which generates the meanings for words (in this case, from a phonological representation), but then attempts to reproduce the phonological representation from the semantic output. Lexical decision is performed on the basis of how well the pronunciation can be reproduced from the computed meaning. This consistency testing is similar to the familiarity testing approach adopted by Seidenberg and McClelland in their original model. With a lexicon of 200 words and 3800 potential nonwords, Bullinaria showed that the phonological consistency error scores for words and nonwords did not overlap, so long as the network was well trained. The problem with this network was that the words possessed no frequency structure and thus the benchmark discriminability of low frequency words from very word-like nonwords was not tested.

Conclusion.

It is somewhat worrying for the distributed framework that a model has yet to show clean discriminability between words and nonwords in word recognition. This gives some credence to Forster’s view: why bother to model an all-or-nothing relationship like being-a-word using a continuous, graded system? Nevertheless, it may well be possible to do this, by employing (some combination of) sparse semantic representations, plenty of hidden units, an attractor network, and consistency checking.

Section 4: The simulation of priming by Weight Change in the Orthography to Semantics Network.

In this section, we will examine the implications of modelling priming using weight change in a network mapping between orthographic and semantic codes.
Priming Procedure.

Priming was evaluated using the same procedure employed in the weight change condition in the Orthographic Autoassociation network. The trained network was trained for a further 12 epochs on the prime alone, and then the performance on all other items evaluated. Primed performance was compared to the base rate performance for these items in the unprimed network, to derive the degree of priming.

The performance on words was evaluated according to the root mean squared error to their target semantic codes. Performance on nonwords was evaluated according to the RMS error to the notionally correct output, zero on all semantic features. Following the assumption that the Orthography-to-Semantics network only receives training to generate meanings for words (and not the lack of meaning for nonwords), extra training in this network only took place for word primes. The performance on word and nonword targets was then evaluated.

The sparseness level of the semantic code was initially 10% over 40 output units. The network had 16 hidden units, and was tested at three points in training: at 100, 250, and 750 epochs of training. A learning rate of 0.5 was used. As before, the results were averaged over three runs of the network in each condition.

Figure 6.11 shows the amount and type of priming items receive from extra training on word primes. The results show the priming on targets that are identical to the prime, one letter different, two letters different, and three letters different. Results are shown for word-to-word priming, and word-to-nonword. Word priming is against its correct meaning, nonword priming against an output of all zeroes. 

Figure 6.11: Comparison of priming effects in the Orthography-to-Semantics network, using Weight Change, for different amounts of training. The network had 16 hidden units and was trained with a learning rate of 0.5. (N=3).

Values show <Unprimed - Primed> error. Positive values indicate facilitation.

a) 100 Epochs of Training.


b) 250 Epochs of Training


c) 750 Epochs of Training


Results.

The results show that word repetition priming was isolated to the word itself. Priming on a word produced comparatively small changes in performance for words that were similar to it. The nonword priming results show a surprising pattern: error scores for the nonwords to the notionally correct output of all zeroes actually reduced. This was more so for nonwords sharing letters with the word prime. This result suggests that similar nonwords gained more from the additional deactivation of semantic features which were non-active in the prime word’s meaning, than they were hindered by any further activation of the prime’s positive semantic features. The isolation of priming effects to single words, separate from their orthographic neighbours, is consistent with the pattern found in long term repetition priming.

However, the results did not show the interaction with frequency / degree of training which is characteristic of long term repetition priming. Subsequent results suggested that this was either a consequence of network saturation, i.e. that 100 epochs of training already corresponded to high frequency performance, or an artefact of directly equating degree of training across the whole corpus with frequency effects. The bilingual simulations in which a frequency structure was built into the training set demonstrated a robust interaction between priming effects and frequency under equivalent conditions (see Chapter 7).

The effect of number of hidden units, and degree of sparseness of semantic coding.

Priming effects were examined in networks with different architectures, to investigate the importance of the internal representations on priming patterns. A 2-layer network, and 3-layer networks with 8, 16, and 24 hidden units were tested. Figure 6.12 shows the results of these simulations. The patterns of priming were also compared for semantic codes with different degrees of sparseness. Because these networks were set different mapping tasks, and had different numbers of output units, the size of the priming effects were not directly comparable. However, of relevance is the pattern of effects in each net. Figure 6.13 shows these results.

Figure 6.12: Comparison of priming effects in the Orthography-to-Semantics network, using Weight Change, for networks with different numbers of hidden units. The networks were trained for 100 epochs, with a learning rate of 0.5 and a momentum of 0. Results are averaged over 3 runs of each network.

a) 2-layer network (no hidden units).


b) 8 hidden units


c) 16 hidden units


d) 24 hidden units


Results.

The 2-layer network demonstrated some facilitation of words that shared letters with the word prime. The use of more hidden units eliminated this effect and concentrated the facilitation effect on the word itself. The similarity-based facilitation in the 2-layer network, and to some extent in the 8 hidden unit network is curious, given the fact that words with similar forms do not generally have similar meanings. If the mapping of a similar word form to a dissimilar meaning is encouraged, the result should be inhibition rather than facilitation of the target word’s mapping to its own meaning. The mild facilitation effect between similar words results from the semantic coding scheme used in the simulation. With 10% of 40 features active in each meaning, some overlap of semantic features for words with shared letters is likely. Words which share letters are also likely to share many zero semantic features. Net priming will be a combination of several effects, given by the following equation: 






(3)

where Prime(T ) is the net priming effect for target T, (A is the increase in activation of a set of features, (D is the decrease in activation of a set of features, Sa defines the set of features which should be active for T, and Si defines the set of features which should be inactive for T.

In the semantic coding scheme used, this sum turned out positive for similar words when generalisation was emphasised in the network. Figure 6.13 shows that with more sparse coding schemes, the expected inhibition of similar words appeared.

Conclusion.

The simulation of priming effects using weight change in the Orthography-to-Semantics network produced some of the characteristics of long term word repetition priming. Priming was isolated to words and showed little transfer to orthographically similar items, especially with larger numbers of hidden units.

Figure 6.13: Comparison of priming effects in the Orthography-to-Semantics network, using Weight Change, for semantic codings with different degrees of Sparseness. The networks had 16 hidden units and were trained for 100 epochs, with a learning rate of 0.5 and a momentum of 0. Results are averaged over 3 runs of each network. (Note that absolute values of priming are not comparable

across these networks, since they were performing different mapping tasks).

a) Average of 10% of features turned on per item, over 40 output units.


b) Average of 5% of features turned on per item, over 60 output units.


c) Average of 3% of features turned on per item, over 100 output units.


Why is word repetition priming confined to the prime itself using Weight Change?

The comparison of Persisting Activation and Weight Change methods for simulating priming has pointed towards a qualitative difference in the type of effect produced. Priming according to persisting activation is strong driven by similarity. It spreads to facilitate items similar to the prime, and inhibit items dissimilar to the prime. Weight change on the other hand appears to produce maximal effects for repetition of the prime itself, and only minor effects for items sharing a similar input form.

The explanation for this distinction is as follows. Persisting activation depends on graded similarity of activation within the network. For instance, in the autoassociative 3-layer network, similar input patterns usually generate similar hidden unit patterns; similar hidden unit patterns usually generate similar output patterns. Priming is strongly driven by the similarity of the activation state left in the network by the prime to the required activation state of the target, both on the hidden units and on the output units.

Weight change, however, is driven by error scores generated at the network’s output. Changes in the network’s weights caused by the error on a single mapping occur predominantly for the weights connecting the hidden units to the output units, and for the output units’ biases (Sharkey and Sharkey, 1994). In other words, most of the reduction in error is produced by changing the top part of the network. Only after repeated presentation of the entire corpus do significant weight changes propagate back down to the weights connecting input units to hidden units. For a given prime, the maximal weight changes will be on those weights connecting units active in the prime’s hidden unit representation to the output units, to encourage those units to generate the appropriate output pattern. In addition, the resting activation of the output units will be raised if a given unit is active in the semantic code for the prime, and lowered if it is inactive.

If weight change is the mechanism which underlies priming in the Orthography-to-Semantic network, then the main characteristic of repetition priming is that it will be confined to the word itself.

Under what circumstances will weight change cause similarity-based priming effects? Consider a single output unit, semantic feature S, receiving a number of connections from the hidden unit layer, as shown in Fig. 6.14. Priming will occur between two words if they share this semantic feature, and if their input forms tend to activate this feature using the same weights (e.g. x1 and x2) - since these are the weights strengthened by priming. Two word forms will tend to activate a shared feature using the same weights only if they are orthographically similar. In short, priming by weight change will be confined to repetitions of the word itself, and to words both semantically and orthographically related to the prime. A target which has a similar word form but a different meaning to the prime will not activate the primed semantic feature, S. A target which has the same meaning as the prime but a different word form won’t use the primed weights, x1 and x2, to active the semantic feature S.


Figure 6.14: A subset of the connections to a semantic output unit in the 


Orthography-to-Semantics network.


This account produces an explanation of why long term priming effects are found between morphologically related words (i.e. with both orthographic and semantic relations), but not between merely orthographically related words (e.g. Murrell and Morton, 1974), or between semantically related words which have different orthographic forms.

There are two other circumstances where long term priming might occur. Firstly, if the network is primed with many orthographically similar words, this may facilitate the orthographic neighbourhood at the hidden unit level, despite the fact that the meanings for these words are different. This would account for Rueckl’s (1995) demonstration of long term similarity based priming by whole word sets. However, as was suggested in Chapter 5, the fact that the effect works just as well for pseudowords implies that the Orthography-to-Semantics network may not be the best place to situate it. This effect may be in the (unimplemented) part of the network mapping between visual features and orthographic representations.

Secondly, if the network is primed with many words with similar meanings, this may facilitate the semantic neighbourhood for those words, despite the fact that their orthographic forms are different. The weights from all the hidden units to the relevant semantic features will be strengthened. I am not currently aware of any studies that have looked for this effect.

Section 5: An integrated account of lexical decision and priming effects in the Seidenberg and McClelland framework.

In this section we will attempt to draw together the results of the simulations in this chapter and the results from previous models of priming in distributed systems, to construct an integrated account of

i) how lexical decisions are carried out in the Seidenberg and McClelland framework; and

ii) how the various priming effects may be explained within such a distributed system.

The empirical literature on word recognition is one of the largest in cognitive psychology, and the following account will not pretend that a distributed framework can currently capture even the majority of that data. The aim in the following paragraphs is to try and incorporate as many of the main effects as possible. The weak points of the account will be pointed out as we go along.

How lexical decision works.

Information from several sources is combined to perform lexical decisions in the Seidenberg and McClelland framework. These sources may be differently weighted according to task demands and stimulus sets. The principal sources of information relate to the meaning generated by the orthography-to-semantics network, and the orthographic familiarity of the input string derived by the reproduction of orthographic information.

Lexical decision is performed in the main by the semantic route. There are three candidates for evaluating the semantic output from a given string. The appropriate candidate will depend on how semantic information turns out to be represented (see Section 3). One approach is to discriminate letter strings from words if they activate an insufficient number of semantic features. A second approach, proposed by Plaut (in press), allows words to be differentiated from the semantic activation caused by letter strings on the basis that words will fully activate or de-active semantic features. In both of these accounts, partial though sub-threshold activation of semantic features by word-like nonwords might contribute to the pseudoword effect in this route. The third approach checks the familiarity of the semantic output (by checking how well the meaning is reproduced by a semantic autoassociator) or its consistency (by using the semantic code to reproduce the orthographic input; Bullinaria, 1995b). In all three approaches, the use of the semantic route in lexical decision accounts for the relevance of semantic factors such as imageability, and the presence of semantic priming, in the lexical decision task.

The orthographic autoassociator serves as a sort of screening device that can weed out unfamiliar strings prior to semantic consideration (or contribute information in parallel to a semantic analysis). This would account for why Fera and Besner (1992) found that in a lexical decision study, orthographic error accounted for variance in the nonword but not the word data. 

In terms of subject strategy in the lexical decision task, the influence of the orthographic autoassociator may be increased according to the stimulus set, although lexical decision is still primarily performed by the orthography to semantics route on word trials. The orthographic route would be particularly favoured when illegal strings were in the predominance. If this were the case, a Yes-response could be comprised not only of semantic activation but also a ‘Not-No’ response arriving from the orthographic route. This predicts that when unusual words (such as AISLE or YACHT) are presented among illegal nonwords, their performance will be impaired. 

The phonological route contributes to lexical decisions either by testing the familiarity of a stimulus’s pronunciation or by offering an indirect route to meaning. This accounts for the pseudohomophone effect, whereby under some conditions, nonwords producing existing pronunciations are rejected more slowly (Plaut, in press, has demonstrated the pseudohomophone effect in his recent implementation of the framework). However, since phonological familiarity seems unlikely to weed out many nonwords that orthographic familiarity could not, it might generally offer only complementary word evidence or interfering pseudohomophone effects in the lexical decision task. This would explain why Seidenberg and McClelland could begin to generate an account of lexical decision whilst entirely ignoring the phonological route.

This account of lexical decision as it stands is too simple. Firstly, Fera and Besner (1992) have pointed out that a featural account of semantic representation cannot deal with all the empirical data on lexical decision. They point to the fact that people’s response times to words with a several meanings are faster than to those with one meaning (Jastrzembski, 1981; Katz, Rexer, and Peter, 1995; Millis and Burton, 1989). In network terms, for polysemous words, the same orthographic input would be mapping to different semantic codes in different contexts. Such competition predicts worse rather than better performance. Of course, currently no implementation of contextual effects has been offered within the Seidenberg and McClelland framework; at the moment this problem lies in the future.

Secondly, it is not clear where orthographic neighbourhood effects are to be situated in this picture. Words that are orthographically similar to a more frequently occurring word are generally harder to recognise than words that have no such higher frequency neighbours (e.g. Grainger, 1990). On the other hand, for low frequency words, increasing the number of orthographic neighbours of a word facilitates its recognition (e.g. Andrews, 1989). Facilitatory effects of neighbourhood would arise straightforwardly in the orthographic autoassociator. Similarity of orthographic form between two words in the orthography-to-semantics network would be inhibitory since such word forms would normally map to different meanings. However, splitting facilitatory and inhibitory effects between different networks is an untidy account.

This raises the third point: how are the orthographic autoassociator and orthography-to-semantics networks to be combined in the model? Coltheart et al (1993) have questioned the motivation for adding the orthographic autoassociator in the Seidenberg and McClelland framework: surely one wouldn’t want to postulate this autoassociator solely to account for performance in an artificial task like lexical decision? In which case, this network must serve a functional role, probably in ‘cleaning up’ the orthographic representation constructed by visual information. This orthographic clean-up would then be taking place as the (emerging) orthographic code was being used to generate the semantic code. The Becker et al (1993) model reviewed in the previous chapter illustrated the potential complications in implementing this kind of iterative network. For example, during the simulation of priming, the model produced a number of unpredictable form-related effects, where the orthographic units ‘cleaned-up’ to produce a semantic output for the wrong word.

Finally, while there are grounds for optimism, it still remains to be demonstrated definitively that a network mapping between orthography and semantics can always distinguish very rare words from very word-like nonwords.

Priming

Long term priming.

Our review of priming effects in distributed networks has suggested the following account of priming in the model.

Word repetition priming occurs in the orthography to semantics network, and only on trials that generate an existing meaning (i.e. not for nonwords). A single word causes weight changes that improve its performance. Although nonwords may produce some activation over the semantic units, we will assume that no weight changes take place for non-established meanings. Despite the fact that the representations in this route are distributed, the preceding simulations suggest that improvement can be isolated to a single lexical item and not those words or nonwords similar to it. This is mainly by virtue of the error driven learning algorithm, which causes weight changes close to the output layer. But it is also by virtue of the arbitrary relationship between orthography and semantics, and the sparse representation of meanings. When both input forms and output forms are similar, there may be facilitation between two words. This relates to the priming found between morphologically related words (e.g. HEALTH, HEALER).

Repetition priming of this nature is long lasting and interacts with the frequency of the word. Priming a word enhances its performance permanently, by the same method that makes a word high or low frequency, or indeed allows the learning of a word at all. Performance on a primed word will only decline by the cumulative effect on the distributed representations of using many other words in the interim. (This view of the long lasting nature of word priming suggests that low frequency words could eventually get wiped from the lexicon.) Currently no automatic decay of priming is envisaged. Parsimony suggests that we only add such a factor if it is necessary. It remains to be seen whether the cumulative weight changes of later primes will produce a decay profile for long term lexical priming that accords with empirical data.

The main problem for this account of word priming is that the comparatively large weight changes caused by extra training on a single item during priming are inconsistent with the training regime by which the network gained its knowledge in the first place. How can this distinction between priming and training be motivated? A recent paper has suggested that the two forms of weight change are not inconsistent, and that both might take place in the cognitive system. McClelland, McNaughton, and O’Reilly (1995) were interested in how the cognitive system - or the neocortex taken to underlie the higher cognitive functions - develops distributed representations, without encountering the catastrophic interference caused by sequential training. Their solution was to propose a ‘buffer’ that could quickly store new inputs from the environment, and which then would present the new inputs to the neocortex gradually, mixed in with other mappings. Presentation of the whole corpus, twinned with small changes in weights, would allow the neocortex to develop the compromise weights which can represent all the patterns in the training set. McClelland et al called this approach interleaved learning, and proposed that the hippocampus was the brain structure which serves as the buffer. However, to explain evidence of learning in patients with hippocampal damage, McClelland et al proposed that each exposure to a learning situation causes small changes directly to the neocortex. Any one change is too small to achieve learning on its own, but when repeated, the small changes add up to a modification in behaviour. Such direct changes to the neocortex would then underlie priming effects. Indeed priming effects have been found in patients with hippocampal damage (Milner, Corkin, and Teuber, 1968; Haist, Musen, and Squire, 1991; Graf, Squire, and Mandler, 1984). And consistent with this view, long term priming effects were achieved in our simulations with only 2% of the exposure required for the network to learn a new word during interleaved learning.

Lastly, we have focused on weight change in the word recognition system as the source of long term priming effects. However, this does not exclude the possibility that some component of repetition priming is episodically based. This issue was considered in some depth in Chapter 3.

Short term semantic priming.

Short term semantic and associative priming occur in the orthography to semantics route. They are modelled respectively by persisting activation over semantic output units and by the order of presentation of words during training in a distributed attractor network (Plaut, 1995a). Once more a featural account of semantic representations has some limitations. Plaut and others have accounted for semantic priming merely on the basis of the overlap of features between related meanings. But this view appears unable to account for indirect semantic priming of the LION-to-STRIPES (via TIGER) variety. Can the features for LION and STRIPES really overlap? However, Bullinaria (1995b) has noted that some form of indirect priming is possible in a distributed model, where the intermediate word is an associate of the initial word and a semantic relation of the final word (e.g. BED to POT via PAN). 

In order to integrate the short term and long term priming accounts in the Orthography-to-Semantics network, it is necessary to show that the repetition priming effects hold in a distributed attractor network. The simulations carried out by Becker, Behrmann, and Moscovitch (1993) are encouraging in this regard, but further work remains to be done.

Short term orthographic priming.

Short interval form-related orthographic priming effects occur in the orthographic autoassociator by allowing activation states to persist between trials. For persisting activation in the orthographic autoassociator to facilitate performance in the lexical decision task, this activation must help the orthography-to-semantics network generate the correct output. In the Seidenberg and McClelland framework, the orthographic autoassociator is recurrent, feeding activation back to itself. Priming this network should generate a stronger orthographic representation to feed into the semantic network.

Persisting activation in the orthographic representations occurs when the markers that distinguish discrete perceptual trials are removed (i.e. through the use of masking). Words and nonwords are not distinguished in the orthographic autoassociator, except that the internal representations autoassociate words preferentially. Thus these effects can occur between nonwords and words so long as their orthography is similar. Forster (1987) found little evidence of priming for nonword targets, and indeed the simulations showed that, particularly at high levels of training, nonword-to-word effects were greater than word-to-nonword effects. In the simulations, the word priming effects did not interact with frequency, since they were dependent only on the exposure of the prime. The absence of a frequency effect in form-related priming is in line with empirical findings (Forster and Davis, 1984).

The empirical evidence suggests that form-related effects disappear for targets with dense orthographic neighbourhoods. The lexicon used in the priming simulations was too small to allow an investigation of the effect of orthographic neighbourhood. But one might imagine the following account of this effect. Priming occurs because the activation state remaining in the network after processing on the prime is close to the activation state required by the target. For instance, let us say that the prime is SAMPLE, and the target SIMPLE. The hidden unit activations for autoassociating the SAMPLE are likely to be similar to those involved in autoassociating SIMPLE, and therefore facilitatory. These words are in a low density neighbourhood. Now consider the case of a high density orthographic neighbourhood. Let the prime be BOOK, and the target LOOK. In this case the network will also have had to learnt to autoassociate COOK, SHOOK, TOOK, NOOK, HOOK, LOOT, BOOT, and so on. In order to differentiate these similar patterns, they must be distinguished in their hidden unit representations, before being reproduced at the output. Hidden unit activations will be less similar for words in dense orthographic neighbourhoods because similar items must be internally distinguished. Therefore, persisting activation from one will be less likely to be of help to another.

This account has a number of problems. Firstly, unlike with the orthography to semantics network, there appears no role for priming by weight change in this network. There is no a priori reason why priming by weight change should happen in one network and not the other. We simply have to suggest that the two networks are quite different beasts. Perhaps this could be because the networks are involved in quite different tasks: the orthography-to-semantics network is involved in recovering a stored representation of meaning from memory, while the orthographic autoassociator is involved in the perceptual recognition of certain combinations of letters.

Secondly, Forster (1987) showed that form-related priming could span an intervening item, although it was much reduced. In the current formulation, the intervening item might well ‘overwrite’ any useful persisting activation between the prime and target presentations. However, if we reformulate the orthographic autoassociator as a recurrent network, then Plaut’s simulation of associative priming using persisting activation is encouraging. This network succeeded in simulating priming effects spanning a single intervening item.

Thirdly, in Chapter 11, an investigation of attrition effects between bilingual’s languages will suggest that it may be best to think of the orthographic autoassociator as a 2-layer network. (Orthographic information from a disused L2 - as revealed by the pseudoword effect - shows no attrition. Word recognition however, becomes progressively slower. A 2-layer network would help to preserve L2 orthographic information). However, eliminating the hidden unit layer would undermine the network’s ability to account for facilitatory orthographic neighbourhood effects.

Phonological priming.

Seidenberg and McClelland in their original model showed that short term priming effects in naming tasks (of the SING, RING variety) could be simulated by weight change in the orthography to phonology network. However, the use of weight change to model short term effects is inconsistent with the current approach. It remains to be seen whether these effects can also be modelled by persisting activation over phonological representations. If not, then a third mechanism of priming will be necessary, one specific to the naming route.

Cross task transfer.

We propose that long term priming effects occur in the orthography-to-semantics network. We might plausibly suggest that in naming tasks they might also occur in the semantics-to-phonology network. This implies that all transfer effects are mediated by semantics, and all tasks exhibiting transfer effects must involve semantics (either directly or indirectly by offering ‘top down’ support in lower level word recognition). This predicts that manipulations to tasks which discourage semantic access should reduce cross task transfer. For instance, in the lexical decision task, the presence of orthographically irregular nonwords allows responses to be generated on orthographic familiarity alone. Or the degree of semantic access in naming tasks might be compared across languages which have differing degrees of regularity in the relation of orthography and phonology: in Serbo-Croat, this relation is very regular, and the direct naming route is much more efficient; in English or Hebrew, the relation is more opaque, encouraging parallel use of the semantic route in naming (Durgunoglu and Hancin, 1992).

Note also that the episodic contribution to repetition priming effects is likely to be attenuated by a change in task. Once more, these considerations are beyond the scope of the model.

Nonword priming.

There is no place in the framework to account for the repetition priming of nonwords over intervals of 3-15 trials (what we might call ‘intermediate term’ priming). These effects are too long to be persisting activation, defined as expiring after a couple of trials. Yet weight changes in the orthographic autoassociator, however temporary, would generalise and predict form-related effects which are not found past intervals of a couple of trials. On the other hand, there seems no way to incorporate nonword priming into the semantic route, since nonwords have no meaning.

In fact, nonword repetition effects can seem paradoxical in the current framework. Nonwords are rejected more slowly the more familiar they seem: this is the basis of the pseudoword effect. Priming should change the network’s weights to make nonwords seem more familiar. For instance, they might be better reproduced by the orthographic autoassociator, or produce more sub-threshold semantic activity in the orthography-to-semantics network. Priming as we have formulated it, then, predicts that a primed nonwords will be rejected more slowly. But the nonword priming effect is facilitatory, not inhibitory.

There are a number of responses that could be made. Firstly, nonword priming effects could represent temporary links between the pattern of activation on the orthographic units, and the response mechanism. Thus a nonword like SARE temporarily forms a link with the generation of a No-response, which is facilitated until the link fades. Such linkages would then be formed for any response, word or nonword.

A second response would be to claim that intermediate term nonword priming entirely reflects the contribution of episodic memory for letter strings. Subjects are using the memory of ‘just having rejected this item’ to allow them to reject it more quickly second time around. However, a study by Monsell (1985) found that in a repetition priming paradigm, the ability of the subjects to decide whether they had seen a nonword before showed a different pattern of accuracy over time than the nonword repetition priming effect. One would then have to claim that episodic memory can contribute to lexical decision responses without being explicitly available to drive performance in an Old/New task, which seems strange.

Thirdly, one could claim that lexical representations for nonwords are continuously being set up in the semantic route, with as yet unspecified meanings - perhaps merely a link to the current semantic context. These representations would then decay over the next 15 or so trials. In fact, Monsell (1985) does suggest that under some conditions, nonwords can be learned as lexical items, so that they show the same long term priming as words. However, this account would also require that the new word was linked to the No-response for its later rejection to be facilitated.

Conclusion.

This integrative account is obviously not complete. There are many areas which require further work. However, for the purposes of this project, we have demonstrated that a distributed framework can generate reasonably consistent accounts of both the lexical decision task and of the variety of priming effects which are associated with it. We ended Chapter 5 with three questions. We may now offer answers to those questions.

a) How should we model priming effects in distributed networks: with persisting activation or with weight change? Both. Persisting activation for short term effects, weight change for long term effects.
b) Where in the Seidenberg and McClelland framework should we expect the various priming effects to be found? Persisting activation in the orthographic autoassociator causes form-related priming. Persisting activation in the orthography-to-semantics network causes semantic and associative priming. Weight change in the orthography-to-semantics network causes long term repetition priming and priming between morphologically related words.
c) Is it possible for a distributed network to prime performance on a single item, in isolation from items similar / dissimilar to it? Yes, using weight change. However, similarity may still cause problems in the orthography-to-semantics network during normal performance, in that word-like nonwords may produce spurious semantic activity. This can be reduced by a number of methods, but it is not currently clear that it can be eliminated.
Conclusion.

We have taken a lengthy diversion from our investigation of bilingual lexical processing. Let us review why this was necessary. Our central focus has been on the implications of distributed representations for bilingual lexical processing. In a review of the relevant empirical literature, we found that one of the principal psychological tools to investigate the form of underlying representations in bilinguals was the lexical decision task. In this task, the transfer of operations across attributes was proposed as the main experimental lever to determine the independence of representations between the two languages. For example, do frequency effects and priming effects in one language transfer to the other language? On the basis of between language similarity effects, we suggested that a single set of distributed representations might be the appropriate way to conceive of the bilingual lexicon. One implementation of this would be an extension of the Seidenberg and McClelland framework in which the mappings for both languages would be stored over common banks of hidden units. Our aim was thus to explore whether the Bilingual Single Network model could account for the pattern of empirical data generated from bilingual versions of the lexical decision task. Derek Besner offered a pertinent response to this line of reasoning:

“Before trying to make the Seidenberg and McClelland model (or the Plaut et al model) account for lexical decision manipulations [such as the bilingual case], I think you would first need to make sure the model can do lexical decision. As far as I can tell, it does not do so with anything like the accuracy that humans do (despite Seidenberg and McClelland’s claims). That would seem to be a major stumbling block.” (D. Besner, personal communication, July 1996).

As a pre-requisite to examining the potential of a bilingual network model to account for priming and frequency effects in the lexical decision task, it was necessary to demonstrate that the Seidenberg and McClelland model could generate a coherent account of lexical decision in the first place. This account was constrained by the need to provide an integrated account of priming effects in that framework. That has been the aim of Chapters 5 and 6. In Chapter 7, we turn to look at the Bilingual Single Network model.

Chapter 7.

A model of bilingual lexical representation in a single connectionist network.

Introduction.

In this chapter we will examine the behaviour of a model that represents the words for two languages in a single distributed network. The primary empirical evidence that will constrain the model will be from bilingual performance in the lexical decision task. This will take the form of differences in normal performance on various sorts of words, and patterns of within and between language priming over long intervals.

The Orthography to Semantics Network.

In the previous chapter, we concluded that a network mapping between orthographic and semantic codes was most appropriate for modelling performance in the lexical decision task. This chapter will therefore focus primarily on a model of the orthography to semantics route in the Seidenberg and McClelland framework. We will be seeking evidence of between language similarity effects in this network. Our interest will focus on any differences that arise between words that exist in both languages compared to those that only exist in one language. Such a distinction would have no meaning were the languages to be represented in separate networks, since all words would only exist in the language of that network. Thus we will focus on the behaviour of a single network trained to generate the meanings of the words in two languages.

The Orthographic Autoassociator.

We suggested in the previous chapter that the orthographic autoassociator may also contribute to performance in lexical decision. We will therefore look briefly at potential similarity effects in this information source. The orthographic autoassociator reproduces letter strings based on their familiarity. The letter strings it has learned to autoassociate will embody certain orthographic rules which may be shared between languages or unique to one of them. We will examine that the interaction of these ‘rules’ inside a single network, against a baseline of how salient they are when separate autoassociators are used for each language.

Although this chapter will focus on long term priming effects in the lexical decision task, let us first briefly consider the implication of network models for explaining between language priming effects over short intervals.

Short term priming effects in the bilingual lexicon.

Short term priming effects between the bilingual’s languages require that the bilingual switches languages during the course of each prime-target trial. The prime will originate from one language, and the target from the other. We might for instance demonstrate that words with the same meaning in each language facilitate each other, so that for French and English, presentation of the word CHIEN just before presentation of the word DOG might help subjects recognise the word DOG.

To interpret the results of such experiments, we need to assume one of two things. Firstly we could assume that both of the subject’s languages are active during the presentation of the prime-target pair. One language recognises the prime, and information from the prime becomes available in time for the other language to be aided in recognising the target.

On the other hand, we could assume that the bilingual has to switch between their languages to move from processing the prime to processing the target. One language is activated to recognise the prime. This language is then deactivated and the other activated in order to recognise the target. During the switch, information is still transferred to generate the priming effect. We have already briefly considered the question of how a bilingual controls their lexical representations in Chapter 3, and we will return to examine this issue in some detail in Chapters 9 and 10 (for it will be a central concern of the Bilingual Independent Networks model). Here we can simply note that when one interprets empirical results from short-term priming studies involving presentation of mixed language prime-target pairs, one has to decide whether one is looking at a pure priming effect, or the combination of a priming effect and a control process.

Despite this caveat, we can make some preliminary points on the basis of the priming framework we considered at the end of the previous chapter. Firstly, unless there is a switching process which wipes the orthographic autoassociator, we might expect some degree of form-related priming across languages, with short prime-target intervals and masked presentation of the prime. Indeed such priming has been found for cognates with the masked priming paradigm (De Groot and Nas, 1991; Sanchez-Casas, Davis, and Garcia Albea, 1992). Secondly, the presence of between language semantic priming effects forms part of the evidence which indicates that the bilingual has a single set of semantic representations for both languages. A bilingual model along the lines of Plaut (1995a) might be able to simulate these cross-language priming effects. Plaut’s model demonstrated that it was possible to simulate semantic priming effects between related words in a single language, using persisting activation over the semantic units. The semantic layer could mediate a between language priming effect if this layer (at least) were common to both languages.

Thirdly, Plaut’s model also gives us an opportunity to explain the special status of translation equivalents in the short term priming paradigm. Various theorists have proposed that translation equivalent pairs have a special status in the bilingual lexicon. Some have even proposed that the lexicons are entirely separate but for links between translation equivalents (e.g. Keatley and De Gelder, 1992). As well as semantic priming, Plaut’s model also demonstrated associative priming, which was a stronger effect than semantic priming alone. Associative effects arose in the model by virtue of the frequent co-occurrence of prime-target pairs in the training regime. As a result, the network became familiar with moving from the recognition of the first of an associative pair to the second. Recognition in this context was superior to recognition of the word out of its associative pairing. If we propose that translation equivalents are frequently encountered sequentially, (for example in acquisition or in translation itself), the special status of translation equivalents in short term priming effects could then be seen as an associative rather than a semantic relationship
.

Long term priming effects.

In this section, we will train a distributed network to map between the orthographic codes and semantic codes for two sets of words. We will examine firstly any interactions that arise between the two sets of lexical knowledge during normal performance, and secondly, the pattern of priming effects within and between the word sets, when the weight change method is used. The following are some of the major empirical effects against which we will evaluate the model’s performance:

· No cross-language priming for translation equivalents (Kirsner, Brown, Abrol, Chandra, and Sharma, 1980; Kirsner, Smith, Lockhart, King, and Jain, 1984; Scarborough, Gerard, and Cortese, 1984);

· Cross-language priming for cognate homographs (Cristoffanini, Kirsner, and Milech, 1986; Gerard and Scarborough, 1989);

· Cross-language priming for non-cognate homographs (Gerard and Scarborough, 1989);

· The response to non-cognate homographs according to within language frequency (French and Ohnesorge, 1995; Gerard and Scarborough, 1989);

· Some evidence of the ability to reject words which appear in the wrong language context as quickly as nonwords in that language (Scarborough, Gerard, and Cortese, 1984), but conflicting evidence that the task irrelevant language cannot be ignored (Altenberg and Cairns, 1983; Nas, 1983).

On the basis of the model’s performance, we may determine the merits of the Single Network account of bilingual lexical representation. (Here is a sneak preview of the results: the model will show a small cross-language priming effect for translation equivalents, but only a fifth of the size of the within language repetition effect; it will fail to show cross-language priming on a par with within language priming for homographs; it will demonstrate performance on non-cognate homographs according to within language frequency; and it will be unable to reject words appearing in the wrong language context as if they were nonwords.)

Simulation of the Orthography to Semantics Network in the BSN model.
Constructing the languages.

The first step of the simulation is to find a training set that is representative of the problem of bilingual lexical representation. For an initial model, it is not practical to employ natural languages. Two artificial word sets were created for the model to learn. To capture the above empirical effects, a more complex set of training patterns was necessary than in the priming simulations. The ‘languages’ thus showed the following features:

· A componential structure.

· Orthographically legal and illegal letter strings in each language: words may be legal strings in both or only one of the languages.

· Word forms may exist in both languages. They may have either the same meaning in each language, or different meanings.

· Words may have either a high or low frequency of occurrence.

· Meanings will be sparsely coded, where few semantic features are active in any meaning, and each feature participates in few meanings.

Two languages, which we will call A and B, were constructed according to the following scheme (summarised in Table 7.1). Each language comprised 96 words. The words were 3 letters long, and used a 10 letter alphabet. Any of the 10 letters could appear in each letter position. There were thus 1000 potential letter strings. The letters were divided into consonants and vowels. The consonants used were b, g, f, s, and t. The vowels used were a, e, i, o, and u. Consonant and vowel templates were constructed to define legal and illegal strings in each language. Each language had 4 permissible templates, and 4 non-permissible templates. The languages had 2 of their templates in common and 2 different. Thus the languages shared the same alphabet, and differed only with regard to the types of letter combinations found in each language. For each template in each language, 20 of the 125 possible legal strings were selected at random. Where the languages shared the template, the strings had to be different. For each set of 20 words, 10 were selected at random to be high frequency, and 10 to be low frequency. The ratio of the frequency of low to high words was 30:100, corresponding roughly to the logarithmic difference between high and low frequency words in English. From each of the 2 templates which the languages shared, 8 more words were selected at random, 16 in total. These word forms would exist in both languages. Half of each group of 8 were randomly assigned to be cognate homographs, and half to be non-cognate homographs, giving 8 of each, and 16 word forms that existed in both languages. Each language thus comprised 20+20+20+20+8+8=96 word forms. The full word sets for each language can be found in Appendix A. 


Table 7.1: Construction Scheme for the 2 lexicons, A and B.

Three letter words employing a 10 letter alphabet.

(C)onsonants:      b, f, g, s, t.

(V)owels:            a, e, i, o, u.


Language A Templates
Language B Templates

Shared
CVV and CVC
CVV and CVC

Different
VCV and VVC
CCV and VCC

Illegal in both
VVV and CCC
VVV and CCC

Procedure.

1 20 of each template are selected at random.

2 10 of each set of 20 are assigned to be high frequency, 10 to be low frequency.

3 Low frequency words are trained at 30% of the rate of High Frequency words.

4 8 Cognate Homographs and 8 Non-cognate Homographs are chosen at random, 4 of each 8 from CVV, 4 from CVC (the two shared templates).

5 Meanings are generated over a bank of 120 semantic feature units. Meanings are randomly generated binary vectors, where each unit has a probability of 10% of being active in a given meaning (and at least 2 features must be active).

6 Words are paired between languages at random, to be translation equivalents, with the constraint that a meaning has to be the same frequency in each language.

7 Cognate homographs are assigned the same meaning in each language.

8 Non-cognate homographs are assigned a different meaning for the same letter string in the two languages.

9 4 of the non-cognate homographs are assigned to be high frequency in A, low frequency in B, and the other 4 to be low frequency in A, high frequency in B.



Meanings were generated for the words over a binary vector of 120 units. The length of the vector was longer than that used before, since sparseness requires that each feature takes part in few meanings, and there were 104 meanings to be represented. A level of 10% sparseness was used, so that each feature had a 10% probability of being active in a given meaning, and each feature was involved in about 10 meanings. Cognate homographs were assigned the same meaning for the occurrence of the word form in each language. Non-cognate homographs were assigned a different meaning for the word form in each language. The remaining words had a form that existed in only one language. These will be referred to as Singles. Each Single was randomly assigned a partner in the other language, with the constraint that it also be a Single and of the same frequency. These pairs were then assigned the same meaning and served as translation equivalents in the two languages.

Language coding units.

Bilinguals can selectively access information about either of their two languages. If two languages are to be stored in a single network, information specifying language membership must therefore be associated with each item. We can think of each item as being tagged for membership in a language on the basis of language specific features available to the language learner. For example, in spoken French there is a tendency to nasalise phonemes, and Chinese is a tonal language. These features may lie implicitly in the representation of the languages, or be drawn out explicitly as representational primitives by the language system. The notion of language tagging is consistent with the majority of previous models of bilingual lexical representation (see Grainger and Dijkstra, 1992; and Chapter 3 part two).

Eight units were used to code the language to which the word belonged. The same scheme was employed here as in the simulation described in Chapter 4. The first four of the units were active if the word was in language A, the second four units were active if the word was in language B. This scheme allowed language membership to be salient to the network in terms of numbers of units turned on, compared to its orthographic form. Language coding was added both to the input and the output vectors. The presence of a tag at output served two roles. It emphasised the representational salience of language; and it also gave the network the potential to classify ambiguous inputs: if words are applied to the network with a neutral input tag, the output tag can serve to identify the string’s likely language membership. 

The network.

A three layer feedforward network was used to learn the mappings between the orthographic and semantic codes. This had 10+10+10+8=38 input units and 120+8=128 output units. To begin with, 60 hidden units were used. The network architecture is shown in Figure 7.1. The network was trained for 600 epochs, at a learning rate of 0.05 and momentum 0. This corresponded to an intermediate level of training. The network was simultaneously trained to learn the mappings for both languages. Words were presented at random from either language during training. The network was strictly feedforward, although this should be seen as an approximation to an interactive system developing attractors (see Plaut, in press).

Two aspects were different from previous simulations. Firstly, the languages had a frequency structure, whereby low frequency items received only 30% of the training that high frequency words received. Following Plaut et al (1996), frequency was implemented in the learning algorithm, by permitting low frequency words only 30% of the weight change prescribed by the algorithm. In essence, low frequency words used a slower learning rate.

Secondly, in determining weight changes, the distance of the output from its target was no longer used as the error measure to drive the learning algorithm. Instead, a cross entropy measure was employed (Hinton, 1989). This still produces a gradient descent algorithm, but is a more efficient way of learning mappings involving large binary vectors.

The network (as for all later conditions) was run 6 times using different random seeds to generate the starting weights, and the results were averaged over these 6 runs.

Figure 7.1: Architecture for the Orthography to Semantics route in the Bilingual Single Network model.


Relating the model’s performance to lexical decision data.

In order to directly relate the performance of the model to the human empirical data, two additional mechanisms should be implemented. First, the activity in the network must build up over time, so that real time activation levels can generate reaction times. Second, there must be a response mechanism. The model needs to generate a word/non-word response, according to a criterion on some aspect of the model’s performance. A number of mechanisms are possible: No-responses might be generated if insufficient semantic activity has been generated after a certain deadline; or No-responses might be generated if semantic codes generated by the input string are unfamiliar, as evaluated by some further processing stage (see e.g. Fig. 5.1); or No-responses might be generated if semantic feature units fail to show an appropriate degree of commitment (in asymptoting to 0 or 1) after a certain deadline. The response mechanism may also combine (and individually weight) information from several sources (among them, orthographic familiarity, and phonological familiarity of the computed pronunciation). Such additional implementation details add complexity to the simulation process. For that reason, they were not included in the initial model. Performance was evaluated on the basis of how accurately meanings were generated for various types of words, and the degree to which this accuracy was mediated by priming (i.e. training on other items).

While it is clear that such accuracy measures do not precisely map to reaction times (see Bullinaria, 1995a, for a detailed discussion of this issue), nevertheless, if the predicted base rate differences and similarity effects do not appear in the accuracy of the network responses, it is hard to see where they will come from in generating the final responses. The use of accuracy measures allows us to focus on representational issues at this point.

Results.

In the results section we will examine normal performance and priming effects. We will then examine the robustness of the effects under various network conditions. Finally, we will summarise any similarity-based effects occurring between the two languages.

Normal performance.

Figure 7.2 plots the first two principal components of the hidden unit activations for the words in the two languages. In this diagram, we can see a similar separation of the two lexicons to that encountered in the simulation in Chapter 4. Close inspection (at some risk to your eyesight!) reveals that cognate homograph pairs are positioned opposite each other in each language cluster (e.g. Cog8 at the top of the diagram, Cog1 and Cog2 at the bottom). Note that the PCA is from a single representative network. PCAs cannot be averaged without losing the fine structure of the internal representations. Nevertheless, all network runs showed qualitatively similar solutions.

Figure 7.3 shows the normal performance of the model on Singles, Cognate Homographs, and Non-Cognate Homographs, averaged over both languages. The measure is the RMS error of the semantic vector produced by the word form to its intended meaning. These results show a marked effect of frequency (simple factorial anova, F(1,3)=907.95, p<0.001). Performance on Cognate Homographs is superior to that on Singles (F(1,2)=7.51, p=0.006), while performance on Singles is superior to that on Non-Cognate Homographs (F(1,2)=8.66, p=0.003).

The frequency effect for Cognates is slightly compressed compared to Singles (F(1,2)=4.09, p=0.044). Non-cognate homographs however show the same frequency effect as Singles (frequency by word type interaction is non-significant, F(1,2)=0.125, p=0.724). The latter result is an important one, since it shows that the same word form can show a different frequency response in each language, even when both word forms are stored in the same network. Empirical evidence to this effect has been taken as suggestive of independent lexicons (Gerard and Scarborough, 1989).

Priming.

The weight change priming procedure was used to examine the effect of priming on a word (see Section 2, Chapter 6). Training continued on the prime in isolation for 12 cycles, using the same learning rate of 0.05. This number of cycles caused a facilitation effect of up to 30% of the RMS error score. While this improvement in performance is larger than those found in the empirical data, the exaggerated priming effect will help us see any cross-language transfer more clearly. The effect of the weight changes due to the first presentation of the word was examined on the word itself (within 

Figure 7.2: Principal Components Analysis of the hidden unit representations for the Bilingual Orthography-to-Semantics Network.

(Balanced Languages, 4 units coding membership of each language, 60 hidden units, 600 epochs of training, learning rate 0.05, and momentum 0).


language repetition priming) and on its translation equivalent (between language priming). For Non-cognate homographs, the effect of priming was examined for the same word form in the other language.

Figure 7.4 shows the within language priming effect on Singles, split by frequency. This shows the standard interaction of the priming and word frequency, in which low frequency words experience greater facilitation than high frequency words (repeated measures anova, F(1,526)=1230.69, p<0.001).

Figure 7.5 shows the within and between language priming effects for Singles, Cognate homographs, and Non-cognate homographs respectively. These results demonstrate significant cross-language effects in all cases (independent samples t-tests, all p-values < 0.001). However, these effects are consistently much smaller than within language effects. For Singles, between language priming to the Single’s translation equivalent causes facilitation, but only 19% the size of the within language effect. For Cognate Homographs, the greater between language similarity leads to a larger between language priming effect. However this facilitation is still only 28% of the within language effect. Lastly, priming on Non-cognate homographs causes the identical word form to be inhibited in the other language, an effect 13% of the size of the facilitation caused by within language repetition. The standard errors of these percentages all less than 1.

A preliminary comparison of the model’s behaviour to the empirical data on priming suggests a poor match. Human performance indicates no between language priming between translation equivalents, but facilitation as large as within language repetition effects for both Cognate and Non-cognate homographs. Is the model’s failure to demonstrate these results due to details of implementation, or to its underlying assumptions? We might expect that the word forms for translation equivalents in real languages would be potentially much more different than in the simplified scheme used here (BUF and TAO are translation equivalents in A and B that differ by three letters; FILLE and DAUGHTER on the other hand differ by more letters as well as having different lengths). Greater difference at input might reduce the long term translation equivalent priming effect to within experimental bounds. Indeed, this predicts that where translation equivalents in natural languages are constrained in how much their orthographic forms may differ, translation equivalents may show between language priming. When Cristoffanini, Kirsner, and Milech (1986) examined cross-language priming patterns between translation equivalents with greater or lesser degrees of orthographic relation, they found data consistent with the view that greater orthographic similarity produces greater cross-language priming.

However, whatever the coding scheme or training patterns employed, this model would not predict equal sized within and between language priming effects for Cognate homographs. The between language effect would always be smaller because of the separation of the internal representations caused by language information. Furthermore, this model would not predict equal sized facilitation effects between the word forms of Non-cognate homographs in each language, since the word forms have inconsistent mappings to their respective meanings in each language. Training on one mapping could never generate an equal improvement on an inconsistent mapping. In at least two respects, the model cannot in principle reproduce the human priming data. We will later question whether the human data on homographs is all it seems to be.

Figure 7.3: Base Rate performance for Singles, Cognate homographs, and Non-cognate homographs in the BSN model of the orthography-to-semantics route. Scores show average RMS error of the semantic output vector to the target meaning, for each word type, split by frequency.


Figure 7.4: Within language priming effects for Singles, split by frequency. Singles are words that have no corresponding form in the other language. Priming is achieved by 12 cycles of training on the target alone. The interaction is significant with p<0.001. Scores show the RMS error of the semantic output to the target meaning.


Figure 7.5: Within and between-language priming effects for Singles, Cognate homographs, and Non-cognate homographs. Scores show the RMS error of the semantic output vector for each word type, in unprimed and primed conditions. (a) For Singles, the target in the between-language condition is the word's translation equivalent. (b) For Cognate homographs, the target in the between-language condition is the identical word in the other language. (c) For Non-cognate homographs, the target in the between-language condition is the same word form in the other language. [Note: The Unprimed scores for a word and its translation equivalent are equal because these results are averaged over the two languages. Each measure contains the score for translation equivalent pairs in the two languages.]
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Conditions.

The effect of training.

Conditions were run comparing network performance at 600 epochs of training with that earlier on in learning, at 100 epochs, and that late on, at 3000 epochs of training. The results showed that the frequency by priming interaction for within language repetition didn’t appear until the intermediate level of training. This interaction occurs because performance on high frequency words saturates. Saturation occurs due to the non-linear processing in 3-layer networks.
 When performance becomes very good, it becomes ever harder to improve further. Performance on high frequency words is good, so that normally these words are less able than low frequency words to benefit from the extra training of the priming procedure. Early on in training, high frequency words have not reached their ceiling, and thus gain to the same extent as low frequency words. In line with this notion, priming effects of all types reduced with further training. Ceiling effects may also explain the compressed frequency range for Cognate homographs compared to Singles. To some extent, training for the word in one language also improves recognition of the word in the other language. This improves both high frequency and low frequency Cognates, but high frequency Cognates start to hit the ceiling. At that point, low frequency Cognates start to catch up, compressing the frequency range.

The effect of the number of hidden units.

Conditions were examined with networks which had 40, 60, and 80 units in the hidden layer. Changing the number of hidden units had little effect on the overall pattern of results. The frequency by priming interaction for within language priming tended to become more accentuated with an increase in hidden units, but this is another instantiation of the ceiling effect. With more hidden units, the network is better able to learn the mappings, and reaches the ceiling more quickly. With fewer hidden units, high frequency words tend to be learnt less well, and thus are further from saturating.

The effect of increasing the number of units coding each language.

In constructing the languages, we used four units to code the language membership of each word, 8 units overall. What happens if we increase the number of units coding language membership, and thus increase the salience of language information to the network? All the preceding conditions were re-run, but now using 8 units to code membership of each language, 16 overall. The network now had 30+16=46 input units, 120+16=136 output units, and either 40, 60, or 80 hidden units depending on the condition. All other parameters were held the same, and once more, 6 networks with different random seeds were run in each condition.

The results showed a reduction in the amount of between language priming from Singles to their translation equivalents, from 19% of that found for within language repetition, to 15% (interaction of priming effect and network type, F(1,959)=8.50, p=0.004). When the 16 language unit network was trained to 3000 epochs, there was a further reduction, to 12% of the within language effect (interaction of priming effect and level of training, F(1,959)=394.62, p<0.001). Similarly, the between language priming effect for Cognate homographs was reduced in the 16 language unit net, from 28% to 24% of the within language repetition effect (F(1,950=24.44, p<0.001), and to 20% with further training in that net (F(1,95)=55.47, p<0.001). Extra language units caused a reduction of the between language inhibition effect in Non-cognate homographs from 13% to 5% of within language repetition priming effect (F(1,95)=72.20, p<0.001). When 16 language unit network was trained to 3000 epochs, the cross-language inhibition effect disappeared entirely and indeed was replaced by a small (4%, p=0.049) facilitation effect (interaction of priming effect and degree of training, F(1,95)=29.31, p<0.001). This is a surprising result. Training on one mapping has now caused a small facilitation effect to an inconsistent mapping. This transfer probably reflects the fact that at higher levels of training, the hidden unit representations become refined, and once the correct meanings are established, may emphasise the similar input forms. Nevertheless, this cross-language facilitation effect is tiny compared to within language repetition of the word form, and nothing like the equal within and between language effects found by Gerard and Scarborough (1989). Other results showed a similar pattern to the networks using 8 language coding units.

If the absence of transfer in priming can be equated to independence, then we may summarise these results as follows. The use of more units to code language membership increased the independence of the language representations. This effect was amplified at greater levels of training.

The effect of differential training on the languages.

The representations developed by the network are in response to equal presentation of the mappings that comprise each language. What if the languages are presented in unequal proportions, so that the network develops superior performance on one of the languages over the other? Should we expect to find similar or different priming patterns in the case of an unbalanced bilingual network? (Note: this is not a model of second language acquisition; rather, a network trained simultaneously on two languages, but to different amounts. This is equivalent to a bilingual who acquires two language simultaneously, but is more proficient in one language than the other. Issues of second language acquisition in the BSN model are considered in Chapter 11.)

We can investigate this situation by adjusting the frequencies of the languages. Previously, high frequency words experienced 100% of the weight change determined by the learning algorithm, and low frequency words 30%. The proportion of weight change that words received was now altered as follows:

Language
Frequency
Proportion of Weight Change

A
High
90%

A
Low
30%

B
High
30%

B
Low
10%

In effect, language B was trained at a third of the rate of language A, and low frequency words at a third of the rate of high frequency words. A network with 60 hidden units was trained for 600 epochs, with a learning rate of 0.05 and momentum 0. Conditions were run with 8 and 16 language coding units, each with 6 replications per condition.

Figure 7.6 plots the first two principal components of the hidden units activations for the words in the two languages, from one of the runs. In this diagram, it is evident that the internal representations for the less trained language (henceforth L2) are more compressed than those for the dominant language (henceforth L1). This bunching is due to the blurred internal representations that a set of patterns forms early on in training.

Figure 7.7 shows the base rate responses for L1 and L2, for the Singles, Cognate homographs, and Non-cognate homographs. Unsurprisingly, L1 shows generally lower levels of error. Due to ceiling effects, the frequency effect in L1 is also compressed. The most interesting result here is that in L2, Cognate homographs were facilitated compared to Singles of the same frequency. A comparison of the results of the unbalanced network with the balanced network showed that L2 Cognates gained an exaggerated advantage (simple factorial anova, interaction of stimulus type (Single vs Cognate) with Network Type (Balanced vs Unbalanced), F(1,3)=9.49, p=0.002). This effect was not evident for Non-cognate homographs (p=0.984), nor for Cognate homographs in L1 (p=0.589). Evidently the additional training the network received on L1 Cognates leaked across the soft representational boundary within the network to help recognise these same words in a different language context. We will shortly see that this pattern of data has been found in a number of empirical studies. Lastly, the results showed that Non-cognate homographs in L2 experienced a compressed frequency range relative to Singles (F(1,1)=8.20, p=0.004). This was a result of high frequency words experiencing inhibition from L1, but interestingly, also the result of facilitation of low frequency Non-cognate homographs in L2 compared to low frequency L2 Singles (t-test, t=2.21, df=50, p=0.032). Recall that in the balanced network, low frequency Non-cognate homographs were slower than comparable Singles (Figure 7.3). For low frequency words, the presence of a highly trained L1 form was helpful.

Figure 7.6: Principal Components Analysis of the hidden unit representations of the Unbalanced Bilingual Orthography-to-Semantics Network.

(Unbalanced Languages A:B = 3:1, 4 units coding membership of each language, 60 hidden units, 600 epochs of training, learning rate 0.05, and momentum 0.)


With regard to patterns of priming, the results showed that L2 primes generated greater effects both for within language and cross-language priming (F(1,958)=112.67, p<0.001). Since performance on L2 words was generally worse, extra training on these items caused greater weight changes, and hence greater priming effects. This contrasts with the asymmetry found over short intervals in the empirical data, where priming is generally greater from L1 to L2. The explanation for this difference is as follows. Performance on L2 is generally worse. In short term priming, an L2 target gains more from the persisting activation created by a stronger L1 prime. In long term priming, since L2 performance is poor, it creates greater weight change in the network.

Is there support for this reverse asymmetry in the empirical data? Cross-language effects over long intervals have only been reported for Cognates and Non-cognate homographs, and the network does not replicate the empirical data for these word types. Therefore experimental data cannot be directly related to this asymmetry in the model. If we were to generate a prediction from the model, we might suggest that where long term cross-language priming effects for Cognate homographs are found, they will be stronger when the first presentation is in L2. Thus far, no studies directly addressing this hypothesis have been found.

Figure 7.7: Base Rate performance for each word type in the unbalanced network. Language A (L1) is trained 3 times as much as language B (L2). Scores show RMS error to the target meaning.

a) Performance for L1 (A)


b) Performance for L2 (B) – ratio of L1:L2 = 3:1

Between language Similarity effects generated by the BSN.

The Bilingual Single Network model simulates a number of between language similarity effects that are found in the empirical literature.

i) Non-cognate homographs.

During normal performance in a Balanced network, Non-cognate homographs were disadvantaged compared to Singles and Cognates of equivalent frequency. Klein and Doctor (1992) found that Non-cognate homographs were responded to more slowly in a lexical decision task than comparable frequency Cognate homographs.

ii) L2 Cognate Homographs.

During normal performance in an Unbalanced network, L2 Cognate homographs generated lower error scores than comparable frequency Singles. While a small advantage for Cognates was present even in the Balanced network, this effect became exaggerated in the Unbalanced network. A number of studies have found such an advantage for L2 cognates in unbalanced bilinguals. Gerard and Scarborough (1989) found a 34ms advantage for high frequency L2 Cognates, and a 94ms advantage for low frequency L2 Cognates, over non-cognate translation equivalents of comparable frequency. Caramazza and Brones (1979) found a 42ms advantage for high frequency cognates, and Cristoffanini, Kirsner, and Milech (1986) reported a 100ms advantage for low frequency Cognates.

iii) The role of language specific orthography.

Network performance was compared between words generated from orthographic templates specific to their language and those generated from templates common to both languages. On first inspection, no significant effects of orthographic specificity were found. However, examination of the network’s performance across the full range of conditions revealed that there was a specificity effect of sorts. It was not initially apparent for two reasons.

Firstly, the effect was a weak one. In both language A and B, any letter could appear in any position in a word. Orthographic rules only played a role in determining the co-occurrence of letters. The distinctions between orthographically specific and non-specific words were relatively minor, at least when compared to the differences between real languages. For example, in terms of orthographic constraints, the difference between ITO (legal only in A) and STO (legal only in B) seems minor compared to the difference between, say, THOUGHT (legal in English but not French) and OISEAU (legal in French but not English).

Secondly, the procedure for constructing the lexicons produced an unexpected difference in the behaviour of the languages. Language A persistently produced a large advantage for words with specific orthographic patterns compared to those with patterns common to both languages. Language B on the other hand showed much smaller differences, and if anything, a minor advantage for non-specific over specific words. When Languages A and B were averaged together in the initial analyses, the already small effects became non-significant.

Figure 7.8 shows the percentage advantage for words with language specific orthography over those with non-specific orthography, in the accuracy with which their semantic codes were produced. Results are shown separately for each language, and across the 10 conditions under which the network was run (n=6 per condition). Language A showed a positive advantage for specific words in 10 out of 10 conditions, of between 6% and 16%. Language B only generated two differences greater than 5%, both in favour of non-specifics.

Beauvillain (1992) has demonstrated an advantage for orthographically specific words in the lexical decision task, even when bilinguals performed the task in a single language context. On the basis of this evidence, Beauvillain claimed that bilingual lexical representation was organised according to orthography rather than language (see Chapter 3).

In a Serial Access model, the specificity effect may be explained as follows. Both languages are combined into a single list. Candidates are generated from the list according the features of the input item. If the item has language specific orthography, this will limit both the size of the candidate list and the entries to one language. A smaller candidate list will take less time to verify against the input and so lead to short recognition times.

In contrast, the Single Network model explains this advantage as an effect of consistency. Orthographic information conspires with language coding information to separate the internal representations for the two languages, when that orthographic information is specific to the language (thus, in terms of the consonant-vowel structure, VVC strings are only associated with the code for language A, and CCV strings are only associated with the code for language B). In the case of non-specific orthography, the same orthographic cues are sometimes associated with one set of language coding information, sometimes with the other (e.g. CVV strings are associated with both language codes). This inconsistency confounds the network’s ability to construct neat internal representations for non-specific words, and thus impairs their performance
. Here we see the contrast between accounts generated by direct access and distributed models. Moreover, we see how Beauvillain’s claim that the lexicon is organised by orthography rather than language may be modified: in a distributed model, these factors may interact in forming the representations of each language.

Why did the advantage for specifics appear in language A but not language B? This was most likely a chance result of the particular items selected to form language B. The conditions under which specificity effects will and will not appear for a pair of languages is an area for further investigation.

Figure 7.8: Orthographic specificity effects for each language, over all network conditions. Scores show the percentage advantage for words with language specific orthography over those with non-specific orthography, in terms of the ratio of the RMS errors of their semantic outputs.


Similarity effects predicted by the model but not yet found in the empirical literature.

The model predicts the following similarity effects. In balanced as well as unbalanced bilinguals, Cognate homographs will have faster recognition times than comparable Singles, although the effect will be smaller for balanced bilinguals. In balanced bilinguals, the frequency range for Cognate homographs will be compressed compared to Singles. Lastly, in unbalanced bilinguals, Non-cognate homographs in L2 will show also a compressed frequency range - low frequency items may be recognised more quickly than Singles of comparable frequency.

Expected similarity effects not found in the network.

Grainger and Dijkstra (1992) investigated the effects of within and between language orthographic neighbourhood densities in a lexical decision task with French-English bilinguals. They found that words which had more orthographic neighbours in the other language than in their own language were responded to more slowly, when compared to words which had more neighbours in their own language. It was initially predicted that BSN model would show similar effects: if a word body is predominantly associated with one language code, when the word body appears with the other language code, it might be disadvantaged. This would be another instantiation of the consistency effect outlined above.

The number of orthographic neighbours was derived for each word in the two artificial languages. A neighbour was defined as a word sharing two of the target word’s three letters, occurring in the same letter positions as in the target. The count showed that words could have between 0 and 8 neighbours in each language. Two tests were run. Firstly, ordinal subsets of words were defined according to the respective numbers of neighbours they possessed in each language. There were three groups: 

1. those which had an equal number of neighbours in each language, which Grainger and Dijkstra referred to neutrals;

2. those which had more neighbours in their own language than the other language (a difference of between 2 and 7), referred to as patriots;

3. and those which had more neighbours in the other language (differences of between 2 and 6), referred to as traitors.
Performance for the word groups was examined for the network using 8 language coding units, trained to 600 epochs. The results showed no reliable difference in performance between these word groups.

Secondly, the accuracy of the semantic output for each word was correlated with the difference in the number of friends and enemies for each word (where friends are neighbours in the same language and enemies are neighbours in the other language). One might predict that more friends than enemies (i.e. greater degrees of patriotism), would lead to lower error scores; and that more enemies than friends (i.e. greater degrees of treachery) would lead to higher errors scores. However, once more there was no significant relationship between these variables (correlation=0.023, p=0.747). The correlation was repeated solely for low frequency words which might show exaggerated neighbourhood effects. Again no relationship was found (correlation=0.085, p=0.413).

Overall, the model failed to simulate the empirical effects found by Grainger and Dijkstra (1992). There are two possible reasons for this. Firstly, given the arbitrary relationship between the orthographic and semantic codes, the similarity of the hidden unit representations of orthographic neighbours may have been too weak to allow cross-language neighbourhood effects to emerge. Alternatively, the occurrence of letter clusters in each language may have been too frequent to allow those clusters to become associated with one or other language code. Such an association would be necessary for consistency effects to arise. The latter interpretation seems more likely, since a network trained to autoassociate the orthographic forms in both languages (see below) and which thus excluded semantics, nevertheless showed the same absence of cross-language neighbourhood effects. In short, it appears that the artificial languages were too similar to each other to properly investigate Grainger and Dijkstra’s findings.

Preliminary results from a simulation of the Orthographic Autoassociator.

We suggested in Chapter 6 that orthographic familiarity, as generated by the orthographic autoassociator, might provide an information source to be used in performance of the lexical decision task. For completeness, simulations were run that investigated performance in this network. In the preceding simulations, we were particularly interested in the cross-language relationships of various words as defined by their meanings. Thus we compared Singles with Cognate homographs and Non-cognate homographs. In the orthographic autoassociator, the only relationship between the languages is orthographic. To check that effects arising from orthography in the single network model were purely by virtue of representing both languages, and not by the random assignment of words to each language from the various templates, the behaviour of this network was compared with the average performance of two independent networks, each trained to autoassociate one of the languages.

The bilingual single network model was as follows: the network represented orthographic information over 30 input and output units; an additional 8 units were used to represent language information, 4 units to tag each language; the network had 30 hidden units and was trained for 60 epochs using backpropagation, with the cross-entropy measure. A learning rate of 0.05 and a momentum of 0 were used. The independent networks represented orthographic information over 30 input and output units; the networks had 20 hidden units, and were similarly trained for 600 epochs. Results were averaged over 6 runs, using different random seeds.

Direct comparisons of performance between the single network and independent networks are problematic, since it is difficult to equate the performance of networks which use different architectures and which are trained on different pattern sets. In the following analyses, only within network comparisons were made. Trained networks were tested on the entire set of possible letter strings. Words were split into Singles, Cognate homographs, and Non-cognate homographs. Nonwords in each language were split into Singles existing in the other language, pseudowords legal in the current language, and illegal letter strings. Singles existing in the other language, and pseudowords could vary as to whether they contained orthographic patterns legal in both languages (non-specific orthography) or legal in only one language (specific orthography).

Results.

The first point to mention from the results is that they suggested a significant limitation of the artificial languages. Words were too similar to nonwords within languages, and the words in each language were too similar to each other, to allow large distinctions to emerge in the autoassociator. The ability of the networks to reproduce input strings on their output units showed a high degree of overlap between word and nonword groups. Even some orthographically illegal letter strings were reproduced as well as words. This implies that the scheme outlined in Table 7.1 generated too many short words using too few letters. This compromised the discriminability of language A words from language B words, and words from nonwords.

Despite this limitation, a number of comparisons were possible. The independent networks made no distinction between Singles which were legal in both languages and those that were legal only in the active language (independent samples t-test, t=1.33, df=158, p=0.184). Thus legality in the language that each network never saw was irrelevant. In the absence of meaning, no distinction was made between Cognate and Non-cognate homographs (t=0.73, df=30 p=0.469). For nonwords, the independent networks reproduced strings better when they were legal in the current language than when they were not (simple factorial anova, F(1,2)=31.22, p<0.001). Curiously, the independent networks reproduced nonwords worse if these strings happened to be words in the other language than if they did not (F(1,2)=4.45, p=0.035). This is a somewhat surprising result, since each network was trained on a single language, and was not informed of the existence of any other languages. The effect is either spurious, or reveals the first statistically significant case of ESP among connectionist networks.

In the single network, performance on Singles legal in both languages was superior to that on Singles legal only in the current language (t=2.73, df=158, p=0.007). Training on templates common to both language appeared to combine across languages to aid autoassociation on input strings consistent with those templates. Once more, in the absence of meaning to distinguish them, Cognate and Non-cognate homographs showed no difference (t=0.79, df=30, p=0.434).

When nonwords were presented to the single network, if they happened to be words in the other language, they were now reproduced more accurately (F(1,2)=49.33, p<0.001). However, the advantage for words presented in the wrong language context over other nonwords was strongly modified by legality. If the wrong context words formed illegal strings in the current language, their error score was much higher (F(1,1)=7.81, p=0.005). This result is shown in Figure 7.9.

In sum, these preliminary simulations generated two interesting findings. Firstly the BSN orthographic autoassociator produced an advantage of non-specific orthography over specific orthography. This is opposite to the pattern found in the BSN orthography-to-semantics network, where specifics have the advantage. In broader terms, this suggests that the recognition of letter patterns is aided by storing two similar languages over common representational resources, but the recovery of word meanings is hampered.

Secondly, autoassociative performance on words in one language leaked across the soft representational boundaries within the network to aid performance on the same string presented in the other language context. However, this leakage depended on the legality of the string in the active language. The network saw wrong context Singles as closer to nonwords when they contained illegal orthographic patterns. When they did not, wrong context Singles were seen as much more word-like. Interestingly, Scarborough, Gerard, and Cortese (1984) found that Spanish-English bilinguals could reject Spanish words as quickly as nonwords in a English lexical decision task. The results of this aspect of the BSN model may therefore be inconsistent with the empirical data. We will return to this point in the discussion.

Figure 7.9: Orthographic Autoassociation errors for nonwords presented to the BSN, split by whether those nonwords form words in the other language, and by whether they come from a template that is legal in the current language or illegal. The interaction is significant (p=0.005).

Possible extensions of the BSN model to the Phonological route.

In our simulations thus far, we have not addressed the mapping of orthography to phonology, or that of phonology to semantics. This is because we argued earlier that it probably has a minor role in performing lexical decision, and that the orthography to semantics network was a better candidate for modelling the priming data relevant to bilingual lexical representation. However, one would expect similar principles to apply in a bilingual orthography-to-phonology network or a phonology-to-semantics network. We would expect the languages to show apparent independence for dissimilar mappings, and interference where the languages were similar. This similarity might either be at input or at output, and be of a facilitatory or inhibitory nature, depending on whether the similarity reflected a consistent response or an inconsistent response from the network.

There is evidence that would support such a model. Firstly, using Serbo-Croats in a naming task, Lukatela and Turvey (1990) found that words with different scripts but between language phonemic similarity were facilitated. Secondly, in the lexical decision task, it was proposed that the phonological route could either offer an indirect route for accessing semantics, or generate interference at semantics through pseudohomophone effects. Using English-Afrikaans bilinguals in a lexical decision task, Doctor and Klein (1992) found that cross-language homophones - which possess the same pronunciation but a different spelling and meaning in each language - were responded to more slowly than comparable frequency words.

Discussion.

We are now in a position to evaluate the potential of the Bilingual Single Network model.

· The model succeeded in simulating the within language frequency response of Non-cognate homographs. This was formerly taken to imply independent representations (Gerard and Scarborough, 1989).

· The model showed very small priming effects between translation equivalents in each language. A greater difference between the word forms in each language may reduce or eliminate this effect, although this remains to be demonstrated. The BSN model may have the potential to simulate the absence of cross-language priming effects between non-cognate translation equivalents (Kirsner, Brown, Abrol, Chandra, and Sharma, 1980; Kirsner, Smith, Lockhart, King, and Jain, 1984; Scarborough, Gerard, and Cortese, 1984).

These two effects alone might allow us to claim that a single network model had simulated the two major criteria for establishing independent language representations. Neither frequency effects nor priming effects transferred across the attribute of language. According to the framework proposed by Kirsner, Lalor, and Hird (1993), we should then assume that language forms a boundary within the internal representations. In the BSN, indeed it does. But now these are representations established over the same set of processing units inside a distributed network.

However, the overall pattern of priming effects generated by the network was more problematic. The priming effects were graded. Within language priming was the greatest, followed by the between language effect for Cognate homographs, followed by the between language effect for Singles, and so on. This graded effect across types of priming does not seem to be apparent in the data generated by empirical studies.

Particularly problematic for the model are the between language priming studies using homographs. Gerard and Scarborough (1989) demonstrated equal within and between language priming effects for both Cognate and Non-cognate homographs. If their result is a valid one, this would be decisive evidence against the sort of model outlined in this chapter. Most at odds with the behaviour of the model is the priming effect for Non-cognate homographs. This is because it bears on our characterisation of priming in lexical decision as changes to a single network which maps directly between orthography and semantics, without intervening word units. Given the importance of the Non-cognate homograph effect, we will seek to replicate it in an empirical study presented in the next chapter.

A further discrepancy between the BSN model and the empirical data occurred in a simulation of orthographic autoassociation. A preliminary investigation was made into the performance of a network trained to autoassociate the words in both languages. In Chapter 6, we suggested that the orthographic familiarity computed by such a network would contribute to performance in lexical decision, perhaps in the rejection of nonwords. In that regard, however, the network produced a result which at first glance appears inconsistent with human empirical data. When Scarborough, Gerard, and Cortese (1984) required bilingual subjects to perform a lexical decision task in English, and thus to reject any Spanish words they encountered, they rejected Spanish words as quickly as if they were nonwords. However, when the BSN network was presented with words in the wrong language context, it generated error scores which were much lower than corresponding nonwords; that is, the network treated them as more word-like, which would lead to longer rejection times. Only when the wrong context words contained orthographic characteristics illegal in the current language did the network see them as resembling nonwords.

On the other hand, the Scarborough et al finding is inconsistent with other empirical data. When Nas (1983) and Altenberg and Cairns (1983) had bilingual subjects perform lexical decision in only one of their languages, they found that subjects were unable to ignore the status of nonwords in the non-active language. In the Nas study with Dutch-English bilinguals, some of the nonwords were homophones for words in the non-active language (e.g. the Dutch word SNEE, meaning “to cut” is pronounced “snay”; thus the letter string SNAY might be included in an English lexical decision task as a homophonic nonword). Such nonwords were rejected more slowly. In the Altenberg and Cairns study using English-German bilinguals, the nonwords could be legal or illegal in the non-active language. Legal nonwords were rejected more slowly.

The results of the simulation suggest one possible solution to this inconsistency. It may be that the Scarborough et al study used Spanish words which were orthographically distinct from English words. This would have allowed subjects to see them as more like nonwords in an English context. The model predicts that if words are presented in the wrong language context and share the orthographic constraints of the active language, subjects will take longer to reject them than comparable nonwords. We will examine the Scarborough et al study in more detail in the next chapter, and also test empirically the predictions of the model on this point.

Lastly, in evaluating the BSN model, we should also consider the alternative Bilingual Independent Networks model. One of the strengths of the BSN model was that it simulated both behaviour taken to imply independent language representations, and a number of between language similarity effects. In Chapter 4, we suggested that the presence of such similarity effects implied representation in a single network. The ability of a single network to capture such effects seems to justify this observation; and to the extent that a large number of disparate effects are captured by the Bilingual Single Network model, it is both a good model and a parsimonious one. It sets the following challenge for the Bilingual Independent Networks model: if the two lexicons are separate parts of the system, how do we account for the similarity effects that arise between them?

The BIN account might run something like as follows: both sets of independent representations are always active. Similarity effects arise from the competition or co-operation of the independent networks in generating an overall response. This account immediately suggests an interesting prediction. When processing an input, if a lexicon is active even when its activity is being predominantly ignored (so that the only signs of its activity are between language similarity effects), then a word presented in the wrong language context should still be processed by its home lexicon. If it is processed by its home lexicon, then its representation should be primed. If the same word is accessed a couple of minutes afterwards from the correct language context, recognition should be faster than in an unprimed condition.

In the next chapter, we will look at an empirical study that examines three questions:

· Do Non-cognate homographs really demonstrate equal within and between language priming?

· In a language exclusive lexical decision task, if Singles are presented in the wrong language context, but contain no orthographic characteristics that mark them as coming from the wrong language, can they be rejected as quickly as comparable nonwords?

· If Singles are presented firstly in the wrong language context, and shortly afterwards in the right language context, will their second appearance be facilitated - as predicted by the Bilingual Independent Networks model?

Chapter 8.

An empirical study of cross-language lexical priming in English-French bilinguals.

Introduction.

In this chapter, a bilingual lexical decision study will be presented. The study seeks to evaluate three questions: whether non-cognate homographs (such as MAIN and CHAT in French and English) show priming effects when repeated between languages; whether word forms which exist in only one language can be rejected as quickly as nonwords when presented in the wrong language context; and whether word forms existing in only one language show priming effects when repeated between languages contexts. The first and second questions are in response to two empirical studies which provided evidence inconsistent with the Bilingual Single Network model. Before describing the experiment, we will look at the empirical studies in more detail.

Gerard and Scarborough (1989).

Gerard and Scarborough employed a blocked lexical decision task to investigate cross-language effects in balanced Spanish-English bilinguals. Subjects performed a block of lexical decision trials in one language, responding positively to items that existed in that language. No stimuli from the non-active language were presented. They then performed an (unexpected) block of lexical decisions in the other language. Included in the stimuli were a number of word forms existing in both languages. These comprised both cognate homographs (e.g. ACTUAL, with the same form and meaning in English and Spanish) and non-cognate homographs (such as RED, which means ‘net’ in Spanish). The results showed a cross-language priming effect for both of these types of stimuli. Moreover these effects were of approximately equal size: 64ms for cognate homographs, 69ms for non-cognate homographs.

In the previous chapter we noted how this equal-sized effect was problematic for the BSN model. We take the orthography to semantics network predominantly to underlie performance in lexical decision; within that network cognate homographs form consistent mappings across languages, whereas non-cognate homographs form inconsistent mappings. In the BSN model, only consistent mappings should show significant cross-language facilitation.

Two aspects of Gerard and Scarborough’s study suggest that their findings are not definitive. Firstly, the study could not directly establish whether between language repetition effects for homographs were of equivalent size to within language repetition effects. This is because the between language effects and within language effects were measured using different subjects; indeed, the within language effects were measured in English monolinguals. For monolinguals, the notion of a homograph is meaningless. Unsurprisingly, these monolingual subjects showed no difference in their responses to words classed as cross-language homographs and those classified as existing only in the monolingual’s own language. The monolingual results demonstrated the standard interaction of priming effect with word frequency, so that high frequency words were facilitated by 17ms on average, low frequency by 94ms. The average of these groups was 56ms. It was on this basis that the cross-language effects of 64 and 69ms shown by homographs were taken to be of an equivalent size to within language facilitation effects.

Secondly, the cross-language facilitation effects shown by the homographs were not sensitive to frequency. That is, there was no significant difference between the cross-language facilitation effects of high and low frequency homographs. In this sense, the cross-language effects were not equivalent to within language effects.

Why might the cross-language homograph repetition effects be of a different nature to normal within language repetition priming? One possibility is that the high salience of homographs in this study led subjects to adopt a cross-language translation strategy. Kirsner, Smith, Lockhart, King, and Jain (1984) showed that between language priming was found when subjects were asked to translate words in their heads. Indeed, Altarriba (1992) has maintained that translation strategies cannot be ruled out at SOAs greater than 300ms. However, according to Gerard and Scarborough, the second (repetition) block of their study was not anticipated. One thus presumes that subjects were not aware of the bilingual nature of the study until they were presented with the second block of trials in their other language. 

It is of interest though, that because the study involved multiple presentations of sets of homographs, a startlingly a high proportion of all test stimuli were word forms that existed in both English and Spanish. In the first block of trials, 56% of all words (38% of all stimuli) were word forms existing in both languages. In the second block, 49% of all words (34% of all stimuli) were homographs. It may be possible that subjects became aware of the ‘bilingual’ status of the stimuli. Indeed in this circumstance, the fact that a word exists in the other language but has a different meaning would be all the more salient. In short, the high salience of homographs may have led to cross-language strategies, resulting in priming for non-cognate homographs as well as cognate homographs.

We can test this hypothesis by looking for cross-language priming effects for non-cognate homographs when the salience of homographs is much lower, for instance in the absence of cognate homographs and with few non-cognate homographs in the stimulus set.

Scarborough, Gerard, and Cortese (1984).

These authors carried out a lexical decision study using unbalanced Spanish-English bilinguals. Subjects were required to perform exclusive lexical decision in English (L2), where they had to respond positively only to items that were words in English, and reject all other items. No homographs were included in the test stimuli. In one condition for the English-exclusive lexical decision task, Scarborough et al included existing Spanish words along with the nonwords to be rejected. They found that subjects rejected the existing Spanish words as quickly as nonwords generated from Spanish words. They took this to suggest that knowledge about Spanish words was separate from that about English words, and that the subjects had entirely screened off access to their Spanish lexicon. Although the authors recognised that bilingual Stroop studies have suggested that such selective access cannot be achieved (e.g. Preston and Lambert, 1969), Scarborough et al comment:

“There are reasons to reserve judgement on this result as subjects in [Preston and Lambert’s] task were aware of the bilingual nature of the task. Further, the subjects had relatively little practice in any condition before switching to a new condition. That is, they switched frequently from one language to the other.” (p. 89/90).

In the previous chapter, we saw that these data were inconsistent with the performance of the BSN model, which did not treat words in the wrong language context like nonwords unless they contained illegal orthographic patterns in the current language. Further, we pointed to studies by Nas (1983) and Altenberg and Cairns (1983) which presented conflicting evidence to the Scarborough et al study - although neither of these latter studies actually required subjects to reject words presented in the wrong language context.

What other explanations might there be for Scarborough et al’s result? There are two possibilities. The first is that the bilingual subjects were only using English knowledge but could reject Spanish words on the basis of their orthography alone. That is, the Spanish words and nonwords used in the experiment looked different from English words - perhaps violating English orthographic constraints - and were thus equally easy to reject. The second is that the bilingual subjects were using their Spanish knowledge even when responding in English. Thus they recognised Spanish words and nonwords and were able to configure their response mechanisms to quickly reject anything identified as looking Spanish. These strategies are feasible because the set of nonwords against which the rejection of Spanish words was compared, was itself generated from a set of Spanish words, and thus might have included characteristic Spanish orthographic patterns.

Scarborough et al did not include their stimulus set so that we might evaluate whether the Spanish words and nonwords are distinguishable from English words. However, they commented that the Spanish words were deliberately chosen to be non-cognate translations. The authors were aware of the possibility that their results could be accounted for by orthographic strategies among their subjects. Therefore, they asked a separate set of English monolinguals to rate the English generated nonwords, the Spanish words, and the Spanish generated nonwords for how “English-like” they were. The results offered some support for the idea that the bilingual subjects had been using orthographic cues: the monolinguals rated the English nonwords as more English on the basis of their orthography than either Spanish words or nonwords. However, Scarborough et al concluded that orthography was not a sufficiently reliable cue to determine from which language each item originated. On the other hand, their own data showed that in a lexical decision task English monolinguals were able to reject Spanish words and nonwords significantly faster than they rejected English nonwords. The possibility that the bilingual subjects were using orthographic cues is a strong one.

Nor might Scarborough et al’s approach to ruling out orthographic strategies have been the appropriate one. If bilinguals were using their knowledge of Spanish to reject Spanish looking items, the fact that English monolinguals could not reliably discriminate these items from English nonwords is irrelevant. Two aspects of the data suggest that the bilinguals had configured their response mechanism to reject items which showed Spanish orthographic characteristics. Firstly, when the Spanish words were included in the English exclusive lexical decision tasks, subjects then took longer to reject English looking pseudowords. This suggests English-ness was being taken as a cue to respond Yes, and Spanish-ness as a cue to respond No. Secondly, the speed with which Spanish words were rejected was insensitive to their frequency. This suggests that the response mechanism was configured to orthographic rather than lexical information.

To test whether Scarborough et al’s result may have originated in strategies based on orthographic cues, we might repeat the experiment, but in the absence of any cues that could link words or nonwords to either language.

Method
Brief outline of the study.

English-French bilinguals were required to perform a language exclusive lexical decision task. They alternated between their languages, performing sets of 48 trials in each. Depending on language context (cued by the colour of the background) subjects had to respond positively only to words in that language. This constraint was enforced by the presentation of Singles (words existing in only one language) in the wrong language context. This served to focus attention on a single lexicon at any one time. The only word forms existing in both languages were the test set of non-cognate homographs, which formed only 7% of all stimuli (including their repetitions). There were no cognate homographs, which could obviously flag between language status. Test stimuli were repeated over lags of 16-30 items. Repetitions could occur within a set of consecutive trials in a single language, or across a switch to a set of trials in a different language. To reduce the salience of repetitions, trials were be split up into lists of 12, with repetitions occurring in the next-but-one list. 

Subjects.

Twenty one subjects were recruited from the Oxford Subject panel. The subjects were aged between 18 and 30. The majority of the subjects had English as a first language, and French at least to A-level standard. Two of the subjects were French native speakers who had lived in England for at least two years. Overall, subjects were more proficient in English. Data from 5 of the subjects were not employed in the final analysis, as part of a balancing procedure (see Results).

Design.

Subjects were required to perform language exclusive lexical decisions, responding positively to words which existed only in the currently active language context. The language context was specified by the colour of the background on which the stimulus was presented, blue for English, red for French. Trials were organised into lists of 12 stimuli, with a break between lists. Lists were in a single language. Language alternated every four lists, giving subjects 48 consecutive trials in each language. Initially, there were three practice lists in English, then three practice lists in French. The order of languages was counterbalanced across subjects. The main experiment comprised 3 blocks of 16 lists, followed by a last block of 17 lists. In total, there were 852 trials. Within the main experiment, there were 16 switches of language.

Stimuli: Non-cognate homographs.

The test stimuli comprised a set of 30 non-cognate homographs, words existing both in French and English, but with a different meaning in each (e.g. FIN, meaning ‘end’in French). Only 30 ‘good’ homographs were available at the time of constructing the experiment (i.e. words which did not have an obscure or slang meaning in one of the languages, and whose meanings in each language were completely unrelated). The test stimuli that were used had a higher mean frequency for their French meanings than for their English meanings. Between language comparisons on test stimuli conflates a difference in frequency with a potential subject difference in language dominance. The scope for meaningful between language comparisons was thus limited.

To lower the salience of repetitions, test stimuli were repeated every other list. First presentations of a stimulus occurred between the 3rd and 10th position in a list of 12. Second presentations occurred between the 3rd and 10th position in the next list but one. Lags thus varied between 16 and 30 items (see Figure 8.1). In real time, these lags were between 20 and 60 seconds. Repetitions could fall within a set of 48 single language trials, or span a switch of language. Four repetition conditions were possible:

Table 8.1: Repetition types.

First Presentation
Second Presentation
Repetition Type

English
English
Within language

English
French
Between language

French
English
Between language

French
French
Within language

The means and standard deviations of the lags were equated across the four repetition conditions. The use of 30 non-cognate homographs (henceforth NCHs) ensured that there would be a low proportion of homographs in the experiment, and hence that the salience of items with cross-language status would be low. However, split over 4 repetition conditions, the number of NCHs per condition becomes small. To compensate for this, 15 NCHs were used in each repetition condition, and two subject groups were employed. The first group saw the first two repetition conditions (E-E, E-F), the second subject group saw the second two repetition conditions (F-E, F-F). The 30 NCHs were split into two sets, balanced in terms of frequency (using the Kucera and Francis ratings), and imageability (ratings from Quinlan, 1994)
. Some NCHs had the same grammatical category in each language (e.g. noun-noun, such as COIN), others a different category (e.g. CHAT, verb-noun). These were also balanced across the groups of 15.

Stimuli: Singles and Nonwords.

In addition to the non-cognate homographs, three other groups of stimuli were repeated between lists: words existing only in English, words existing only in French, and nonwords orthographically legal in both languages. Each group contained 30 items, but was again split into two sub-groups of 15, and subject to the same repetition conditions as the NCHs. 

The 30 English words formed orthographically legal letter strings in French (e.g. RAIN). These stimuli will be referred to as English Singles. The English Singles were matched to the English meanings of the NCHs, on frequency and imageability measures. The 30 French words formed orthographically legal letter strings in English (e.g. BAIN) and were matched to the French meanings of the NCHs, on frequency and imageability measures. Due to the higher frequency of NCHs in French, French Singles had a higher mean frequency than English Singles. The 30 nonwords were created using a list of cognate homographs generated by a corpus search of each language. Vowels were altered in these words to form nonwords orthographically legal in both languages.

The stimulus sets are shown in Appendix B. Appendix C includes measures of English-ness and French-ness, based on bigram and trigram counts of respective corpuses. These tables establish that the stimulus sets indeed have orthographic patterns equally probable in each language.

Filler stimuli.

The stimulus set was completed using filler words and nonwords. 50% of these items were nonwords, again generated by changing vowels in cognate homographs to ensure orthographic legality in both languages. Nonwords were randomly assigned to a French or English language context for each subject. 25% of the filler items were English words, which had an orthographic form legal in French. 25% were French words, which had an orthographic form legal in English. Filler stimuli were recruited by dictionary search, and checked for respective legalities by establishing that their mean bigram and trigram frequencies were approximately equal in each language.

Overall, there was an equal number of French and English words in the stimulus set, and an equal number of words and nonwords. All strings presented were orthographically legal in both languages.

Figure 8.1: Diagram showing the range of possible intervals between repetitions in the bilingual lexical decision priming study.

Procedure.

Subjects were seated in front of a computer in a sound-proof room. The nature of the lexical decision task was explained to them. They were told that they would be performing this task in French and in English, depending on the colour of the background on which the stimulus appeared. If the stimulus appeared on a blue background, the subject was told to press the YES button on the keyboard if the stimulus was an English word, and the NO button if the stimulus only resembled an English word, or if the stimulus was a word that existed in French but not in English. Similarly, the subject was told that if the stimulus appeared on a red background, they were to press the YES button if the stimulus was a French word, and the NO button if the stimulus only resembled an French word, or if the stimulus was a word that existed in English but not in French. Subjects responded with the index and middle fingers from their dominant hand. No mention was made to the subject of the possibility that stimuli could be words existing in both languages. Subjects were informed of the list structure of the stimuli, and how often switches in language occurred. Subjects did not encounter unexpected switches in language.

Subjects were instructed to go as quickly as possible without making any mistakes. They were told that their data could not be used if they made more than 1 error per 10 trials. They were given feedback after the practice blocks in each language, but not during the experiment proper. 

A 286 PC with a timer card was used to present the stimuli and measure the response times via the keyboard. The keyboard had a refresh rate of less than 1ms. The stimuli were presented in a 5.6cm by 2.8cm coloured rectangle in the centre of the screen, in upper case Arial font, with characters that were 0.8cm high. The use of upper case characters allowed accents to be omitted for French words, common practice in French. This ensured complete orthographic ambiguity between the languages. The subject was seated 50cm from the screen. On each trial, the screen was initially blank, save for a fixation point in the centre. This was replaced by the stimulus in the coloured box. The stimulus remained on the screen until the subject responded. There was then a 500 millisecond inter-trial interval before presentation of the next stimulus. Between each list of 12 stimuli, there was a fixed 5000ms break, concluded by an electronic beep 1000ms before its end. This allowed subjects to look away during the between-list interval. Subjects were allowed a 2 minute break between each of the four stimulus blocks. The experiment took on average 40 minutes to complete.

Results.
Balancing procedure.

In the following analyses, between subject group comparisons were required, where the unprimed response time for an item would come from one group and the primed response time for that item would come from the other group. It was thus important that the two subject groups were balanced on their proficiency in English and on their proficiency in French. A measure of each subject’s proficiency in their two languages was derived by taking the median response times on the filler words for each language. The means for these English and French base rates were then derived for each group. When 5 subjects were eliminated from the analysis, the English base rates fell within 1 millisecond of each other (597ms and 598ms) and the French base rates within 10ms (665ms and 675ms). The groups had a similar distribution of proficiencies in each language. In the following analyses, there were thus 8 subjects in each group.

Overall Analysis.

A repeated measures anova was performed on the median correct response times for subjects on the filler items, with factors of Language (English/French) and Stimulus Type (word/nonword). Subject Group was included as a between subjects factor. A parallel analysis was performed on the error rates. Table 8.2 shows the mean of the median response times and the mean of the error rates for each subject group.

Table 8.2. Group means for subjects’ median reaction times (msecs) and error rates, for the filler items in the language exclusive lexical decision task.


English Language Context
French Language Context


Words
Nonwords
Words
Nonwords

Subjects
RT (ms)
Error Rate
RT (ms)
Error Rate
RT (ms)
Error Rate
RT (ms)
Error Rate

Group 1


597
24.7%
667
19.7%
665
34.8%
696
22.2%



Group 2


596
29.0%
707
24.6%
675
36.0%
777
29.6%



The results showed a significant effect of Language (F(1,14) = 44.24, p<0.001) with English context responses being on average 62ms faster than French context responses. There was a significant effect of Stimulus Type (F(1,14) = 12.14, p=0.004) with responses to words being on average 79ms faster than those to nonwords. There was no significant effect of Subject Group (p>0.5), and no significant interactions. The analysis of error scores showed an identical pattern. The error rates were high, reflecting the difficulty of the language-exclusive lexical decision task. The mean performance level was 72.4%.

An Item analysis was also performed, pooling responses across subjects. For this analysis, correct response times which were outside 3.5 standard deviations from the mean were cropped (Kleinbaum, Kupper, and Muller, 1988). This eliminated 0.9% of the data points. A simple factorial anova showed significant effects of Language (F(1,3) = 116.310, p<0.001) and Stimulus Type (F(1,3) = 154.377, p<0.001). In contrast with the Subject analysis, the Item analysis showed a significant effect of Subject Group (F(1, 3) = 16.977, p<0.001) with the mean response times for the groups being 667ms and 679ms. Subject Group also interacted with Stimulus Type (F(1,3) = 9.053, p=0.003). These results indicate that with their data pooled, one of the subject groups was slightly slower, and that the difference in their responses to words and nonwords was also slightly different.

In sum, the overall analysis showed that the subject groups were fairly well matched, and that on average, subjects showed faster responses in an English language context than in a French language context.

Within and between language priming effects.

Stimulus groups were repeated either within or between language contexts. When the first and second presentations of an item span a change in language, priming effects will be confounded with a change in base rate performance. For that reason, priming effects between languages were evaluated by comparing the performance on an item in the same context, when unprimed and when primed. This required between subject comparisons, using independent-samples t-tests. Priming effects caused by the repetition of an item in the same language context were evaluated by a straight within subjects comparison of the reaction time on the first and second presentation, using paired-samples t-tests.
 Reaction time comparisons were performed only for items on which both the first and second responses were correct.

Table 8.3 shows the priming effects for non-cognate homographs, English Singles, French Singles, and nonwords, for each repetition type. Table 8.4 shows the corresponding error rates for each word type and repetition condition. In the following analyses, we will focus on the reaction time results since more powerful tests were available for these data.

Table 8.3: Results of the Cross-language priming study. Scores show the mean response time in msecs in the lexical decision task for unprimed and primed stimuli in each repetition condition,when both responses were correct.


Table 8.4: Results of the Cross-language priming study. Scores show the error rates in the lexical decision task for the first and second presentations of each stimulus type in each repetition condition.


Non-cognate homographs.

Non-cognate homographs only showed significant facilitation effects for within language repetitions. For English, this was 138ms (p=0.001), for French 109ms (p<0.001). There was a trend suggesting a possible cross-language facilitation effect when the first presentation was in English and the second presentation in French (89ms, p=0.057). French to English repetition caused a non-significant inhibition effect (50ms, p=0.350), although the error data also reflected this pattern (12% decrease in accuracy). With regard to our primary hypothesis, these data show that non-cognate homographs do not show equal within and between language facilitation. Within language facilitation was the predominant effect. Between language repetitions caused no significant facilitation. (We shall return to the between language trends later).

Words existing in only one language.

If we treat words presented in the wrong language context as nonwords, and recall the finding that nonwords show very small priming effects over the kinds of lags used in this experiment, we should predict the following: Singles will only show repetition priming when repeated in their own language context. The results demonstrated this pattern for English Singles. There was a significant facilitation effect when the word was repeated in English (66ms, p=0.001) but no significant effects for other repetition conditions. French Singles also showed a within language facilitation effect, gaining a 100ms advantage for a repetition in French (p<0.001).

However, French Singles showed two further effects. When French Singles were repeated as nonwords in an English context, there was a facilitation effect of 41ms (p=0.046). When a French Single was previewed as a nonword in an English context, its recognition in a French context was accelerated by 53ms (p=0.035). We will save consideration of these additional effects until we have examined the priming effects for nonwords in the next section.

The Bilingual Independent Networks model predicted that a preview of a Single in the wrong language context should prime the recognition of a word just as well as a preview in its own language context. The data did not support this hypothesis in any simple manner. For English, the wrong context preview caused a very small and non-significant 16ms inhibitory effect (p=0.589), while the correct context preview caused a significant 66ms facilitation effect. For French, the wrong context preview caused a significant 53ms facilitation effect, and the correct context preview a significant 100ms facilitation effect. In short, there were not equal priming effects from incorrect and correct context previews. Although the preview did cause a facilitation effect for French (L2) words, but this was only half the size of the correct context preview.

Nonwords.

Following our assumption that nonwords should not show large priming effects over the lags used in this experiment, we should predict small or non-existent effects for nonwords repetitions. However, in two of the four conditions, there were significant repetition effects. When a nonword was repeated in an English context, it was facilitated by 58ms (p=0.014). When a nonword was first seen in an English context, and then in a French context, its rejection was now inhibited by 99ms (p=0.001). This pattern was reflected in the error data. These effects are curious, more so because they are in the same repetition conditions as the unexpected priming effects for French Singles. A possible explanation for these results is that they reflect episodic rather than automatic access effects. We will consider this explanation in the discussion.

The rejection of Singles appearing in the wrong language context.

Our final hypothesis concerned whether Singles presented in the wrong language context could be rejected as quickly as nonwords, in the absence of orthographic cues to language membership. The response times and error rates to wrong context Singles on their first presentations, and to the filler nonwords, are presented in Figure 8.2. The response times were subject to a simple factorial anova, using factors of Stimulus Type (Singles in the wrong context / Filler nonwords) and Language Context (English / French). The results showed a significant effect of Stimulus Type (F(1,2) = 55.58, p<0.001), and of Language Context (F(1,2) = 6.13, p=0.013), but no significant interaction. On average, subjects took 86ms longer to reject words appearing in the wrong language context than they did to reject nonwords. The difficulty in rejecting wrong context Singles was also reflected in the error data for English Singles. French Singles on the other hand were rejected as accurately as nonwords in an English context. These results offer straightforward support for the idea that Scarborough, Gerard, and Cortese’s (1984) result was an artefact of an orthographic strategy adopted by their subjects.

Figure 8.2:  Reaction times and error rates for Singles presented in the wrong language context (i.e. which must be rejected), compared to responses to filler nonwords.

Discussion.

The current experiment has shown that, using standard levels of significance, non-cognate homographs do not show any between language priming effects. This is consistent with the predictions of the BSN model. It is in contrast to the earlier findings of Gerard and Scarborough (1989), who claimed equal within and between language repetition effects for this type of word.

This experiment has also demonstrated that bilingual subjects are unable to reject words presented in the inappropriate language context as if they were nonwords. This is in contrast to the findings of Scarborough, Gerard, and Cortese (1984), and also consistent with the predictions of the BSN model.

A simple prediction derived from the Bilingual Independent Networks model was also tested. This prediction was that Singles previewed in the wrong language context should serve to prime recognition in the correct language context, and prime it to the same extent as a preview in the correct language context. This prediction was not supported.

On the basis of predictions from the BSN model, we focused on doubts about the methods used in two empirical studies. When we attended to these doubts, the results of those studies were not confirmed. On the contrary, they were consistent with the predictions of the model. Let us examine why the previous studies found the results that they did. We will start with the more straightforward case. In the Introduction to this chapter, we suggested that Scarborough, Gerard, and Cortese’s subjects may have been rejecting Spanish words at the same speed as Spanish-derived nonwords on the basis of orthographic cues. In the current experiment, all stimuli had language ambiguous orthography, and wrong context words were now rejected much more slowly than nonwords. It seems most probable, then, that Scarborough et al’s subjects were indeed using an orthography based strategy to reject wrong context words. In general, subjects cannot ‘screen off’ knowledge of one of their languages, and treat words from that language as if they were simply nonword letter strings.

In the Introduction, we suggested that Gerard and Scarborough’s finding of between language priming for non-cognate homographs may have been caused by the high salience of repeated homographs in their study. Accordingly, the salience of homographs was much reduced in the current experiment, and only non-cognate homographs were used. The absence of cross-language effects in the current experiment is consistent with the salience explanation of Gerard and Scarborough’s results.

Two things remain to be done. Firstly, we need to explain why a reduction in salience should eliminate a priming effect. Secondly, we need to account for the significant priming effects that occurred when French words were previewed in English, and when nonwords were first presented in English.

One explanation of the possible role of salience is that the cross-language priming effects for non-cognate homographs in the Gerard and Scarborough study reflected episodic-based strategies; that is, subjects were faster to accept the homographs on their second presentation because they recalled having seen them previously. Jacoby, Toth, and Yonelinas (1993) have shown that priming effects may comprise both automatic memory and strategic recollection components, and indeed in their experiments, they have shown how these components may be dissociated. Moreover, Jacoby (1983b) has shown that a reduction in repetition salience can reduce priming effects in a word recognition task. In a study phase, he presented two groups of subjects with a set of words to be named. Subjects were then set an unanticipated perceptual recognition task. One group saw a test set of words containing 90% repetitions from the study phase. The other group saw a set of words containing only 10% repetitions from the study phase. The performance of subjects was evaluated on their recognition accuracy for 10 words repeated between study and test, as compared to their accuracy on 10 new words. The 10 previously seen words either occurred in a context of 80 other repeated words, or as the sole repetitions. Jacoby found that the 90% group demonstrated a significantly greater priming effect. Thus the priming effect on the same set of repeated words was increased simply by virtue of increasing the proportion of repetitions surrounding them. Jacoby accounted for the effect of repetition salience in terms of a manipulation of the cues available to subjects which they might use to retrieve ‘whole prior processing episodes’:

“Obscuring the relation between study and test was expected to decrease the probability of retrieving memory for the prior presentation of a word and thereby to reduce later perceptual enhancement of that word.... Presenting a word during study had a larger effect on its subsequent perceptual identification when 90% rather than 10% of the words that were tested had been previously studied.” (Jacoby, 1983b, p.24-5).

This account has some similarity with Tulving’s notion of encoding specificity (1983), whereby reinstantiating the context of study aids later retrieval of a memory trace. The word repetitions constitute the context of study. Extending the episodic account to the Gerard and Scarborough study, it is possible that the high salience of repetitions of homographs allowed subjects to employ episodic traces during the second, cross-language, presentation of these words, and thus show facilitatory priming effects. These effects were insensitive to whether the homographs had the same or a different meaning in each language, and insensitive to frequency, because they were not directly reflecting lexical access.
 In the current experiment, the lack of cross-language priming for non-cognate homographs reflects a reduction in episodically-based strategies.

The last point to be explained revolves around four unexpected, significant priming effects. These effects arose when the first presentation was in English where the stimulus had to be rejected (either as a nonword, or as a French word appearing in the wrong language context). It is also possible to account for these effects in terms of episodic strategies. English was the subjects’ more dominant language, and therefore we can expect subjects to have been confident in their decisions concerning English. They could thus use memory traces of previous decisions in English to aid later responses. In contrast, subjects could be less confident that when they rejected an item in French, this really meant that the stimulus was not a French word. Thus episodic effects only appeared for English first presentations. The highly significant inhibitory effect for rejection of a nonword in French that had previously been seen in English, suggests that when subjects rejected a stimulus in English, they adopted the strategy that it was likely to have been a French word. According to this strategy, if they encountered the stimulus again in an English context, the memory trace of a previous rejection aided rejection on the second occasion. If they subsequently encountered the stimulus in a French context, acceptance of stimuli that were French words was accelerated, and rejection of stimuli that were nonwords was impaired.

In this chapter we considered cross-language priming for non-cognate homographs. It remains to be seen whether the cross-language priming effect for cognate homographs is also reduced when their salience is reduced. This is a line of future research. If cross-language effects remain when the salience of cognate homograph repetitions is reduced, the BSN model once more offers a testable prediction. Such an effect must be small compared to the within language repetition effects generated by these words. 

Chapter 9.

Do between language similarity effects arise from the control of independent lexical representations?

Introduction.

In this and the following chapter, we will evalute the BIN model. Thus far we have put forward a body of evidence detailing between language similarity effects in bilingual word recognition. We have described a model that explains these effects on the basis that the languages share representational resources. In Chapter 4 we also described an alternative hypothesis, that each language would employ architecturally distinct resources. However, if the information about words in each language is stored in independent networks, where do the similarity effects come from? The solution must be that the similarity effects come from the way the activity of the two networks is combined; that is, with regard to the way responses (recovery of meaning, generation of pronunciation, lexical decisions) are controlled using the information sources of the two lexicons.

In this and the following chapter we will investigate the control processes that operate over the bilingual’s lexical representations, with a view to addressing the viability of the BIN account of similarity effects. In this chapter we will review the relevant literature on control processes. In the next chapter we will describe two empirical studies investigating the role of similarity in control. These two chapters will not employ connectionist simulations, since the BIN model assumes that each of its component networks functions as a monolingual network. The relevant questions will focus on how the activity of the two networks is combined in generating responses. In the final chapter, we will then compare the merits of the BSN and BIN models.

How are language representations controlled?

The independent lexicons account of similarity effects might run something like as follows. Between language similarity effects arise because each lexicon “turns itself on” when it “thinks” it should be processing the input. It “thinks” it should be processing the input when the input resembles the sort of word which that lexicon stores. The independent lexical representations might then compete to respond to the input, or co-operate, depending on the consistency of the responses generated from each lexicon. Indeed, the similarity effects listed in Chapter 3 can be categorised along these lines, into inhibitory and facilitatory effects. In tasks such as naming and lexical decision, letter strings with meanings, pronunciations, or orthographic patterns which are inconsistent between the two languages, tend to lead to slower response times. On the other hand, letter strings with meanings, spellings, or pronunciations which are consistent between the languages, tend to lead to accelerated response times.

However, in this account, it is not clear what we mean when we refer to a representation as “thinking” or as “turning itself on”. The opposite of these terms, “responding” and “being turned on”, also raise difficult questions. What agent is responsible for turning a representation on, and how is this achieved?

No full account of the how bilinguals control their language representations is yet available. This is partly contingent on the fact that the investigation of general control processes is still at an early stage (in 1994, Shallice commented: “No theory of control processes can be considered as other than speculative”). Our first task, then, will be to establish what powers it is sensible to ascribe to the representations responsible for performing any task. We will then focus on control as it pertains to the bilingual’s language representations.

The Nature of Control Processes I: A General Review.

Traditionally within cognitive psychology, there has been a greater focus on the component processes underlying the performance of some task, rather than on the control of those component processes (Monsell, 1996). Yet it is equally as important to discover the mechanisms by which processing modules may be linked up to perform a task, or alternatively the pre-existing links between modules enabled to perform the task. Similarly, processing modules themselves may need to be tuned appropriately for a given task. For example, in a task like semantic categorisation, some control process must operate to focus the system’s response to the relevant semantic dimension (such as animate vs inanimate). Issues of control range from the requirement to configure the cognitive system on a moment by moment basis, to the achievement of hierarchies of goals over minutes, hours, days, or even years. Our working definition of control will be as follows:


Control  =  the putting in place of the appropriate processing structures to achieve  current goals.

This function has also been referred to as ‘task-set configuration’ (e.g. Rogers and Monsell, 1995), the adoption of a ‘mental set’ (e.g. Jersild, 1927) or ‘intentional set’ (e.g. Allport, Styles, and Hsieh, 1994). The notion of control within a cognitive system is frequently taken to suggest the presence of a unitary controller, and entities which are controlled. The controller has been referred to in a number of ways, e.g. as The Will (James, 1890), the Central Executive (Baddeley, 1986), or the Supervisory Attention System (Norman and Shallice, 1986). Often, the controller is seen as being a more general purpose processing system, and as being at a ‘higher level’ than the processes it controls. Yet it may merely be a separate processor which is specialised to perform control functions. Further, control mechanisms may not even fall within a specialised module. Some researchers have suggested that control mechanisms are heterogeneous and distributed throughout the cognitive system (e.g. Allport, 1989, 1993; Logan, 1985). The main requirement of a theory of control is that it not postulate an overpowerful controller, which is really no more than a homunculus in disguise (Newell, 1980).

The study of control failures in normal cognition and control failures in patients with brain damage (mainly to the frontal lobes), suggests that the label of ‘control’ comprises a range of processes. Of particular interest in the current context are capture errors. Capture errors occur when a stimulus, which has been frequently associated with a given operation, evokes that operation, even though it is inappropriate to the particular intentional context. For example, say you always drink coffee, but just this once, you fancy a cup of cocoa. One might imagine opening the cupboard and taking out the coffee jar as usual, even though on this occasion you had decided you wanted a different drink. On opening the cupboard, the sight of the jar of coffee triggers the operation of taking it out to make coffee, despite the fact that this is an inappropriate action to the task of making cocoa.

Utilisation behaviours are the equivalent in patients with frontal brain damage. In these cases, patients exhibit an inability to inhibit action patterns from being released or triggered by the perception of objects with which they are habitually associated. For example, Shallice, Burgess, Schon, and Baxter (1989) report a patient, LE, with frontal damage. When at home, LE consistently found himself making tea every time he came across a tea bag, turning lights on and off every time he came across a light switch, and so forth. We might conclude from these failures of control that representations can indeed activate themselves, particularly when they store operations habitually associated to a given stimulus. Moreover, we might also conclude that under normal conditions, there is some sort of actively sustained clamp which suppresses these operations when they are inappropriate to a given situation.

Norman and Shallice (1986) based a model of control in the cognitive system on self-activating representations, called “thought and action schemata”. There are many schemata, each storing a qualitatively different type of action or thought operation. These are triggered by the presence of appropriate conditions, either arriving from the world or from other operations in the cognitive system. Simultaneously activated schemata compete, so that only the “strongest” or most active wins out. The degree of activation of a schema is partly determined by the recency and frequency with which it has been triggered. The model also includes a second level of control, called the “Supervisory Attention System” (SAS). This mechanism activates or inhibits particular lower-level schemata, to bias the outcome of the competitions between them. The SAS biases the outcome of competitions towards the overall goals of the organism. In this model, we again see the combination of self-activating representations and a separate control mechanism which allows such representations to be activated or inhibited according to context and goals.

A number of experimental paradigms have indirectly examined issues of the control of representations. The Stroop effect reveals interference patterns when a more salient task must be inhibited in the face of a less salient task (see MacLeod, 1991, for a review). Studies have looked at dual task performance, where a subject must perform more than one task at once (see Allport, 1980, for a review); or where a subject must perform one task immediately after another, in the Psychological Refractory Period paradigm (see Pashler, 1993, for a review). However, a small number of studies have directly examined the process of configuring the cognitive system for a given task. These studies have generally investigated the factors which influence the performance costs incurred when a subject switches between performing pairs of tasks.

Jersild (1927) required subjects to perform a simple operation on a list of items. For example, a subject might be required to go down a list of written numbers, {subtracting 3} from each, and giving the answer out loud. Or they might be required to go down a list of numbers, {adding 3} to each. Jersild measured the time subjects took to complete a list of each type, and took the average of these times. He then gave subjects a new list, and required them to alternate between the two tasks, {adding and subtracting 3}. The results showed that subjects took longer to complete the “mixed” lists than they did in the average of the two “pure”, single task conditions. In fact, on average they took 1.6 seconds longer per item in the mixed condition. This cost of switching between the tasks might be taken to reflect the time required by the cognitive system to re-configure itself, from performing one operation on the stimulus to performing another. However, the size of this switch cost depended very much on the tasks between which the subject had to switch. If one task was to subtract 3 from a number, but the second task was now to give the opposite to a word (e.g. cold => hot, above => below, etc.), then subjects showed no cost in performing mixed lists over performing pure lists. Jersild’s favoured interpretation of this data was that the switching costs did not reflect the time course of a reconfiguration process, but reflected degree of practice in moving from item to item: the subjects were more practised in moving from one item to another within an operation than they were in moving from one operation to another (Spector and Biederman, 1976). Under this view, switch costs are like the reverse of associative priming: unlikely task transitions take longer.

However, using our distinction between self-activating representations and a separate control process which biases the activity of these representations, we may suggest another interpretation. In the case of the mixed numbers and words list, the stimulus can be allowed to activate the operation which should be performed on it. Numbers do not have opposites, and one cannot subtract 3 from a word. Once the system is configured to perform each task, no further control is necessary: the stimuli will drive the operations. This strategy is insufficient in the case of a list of numbers to which the subject must alternately add and subtract 3. Since each stimulus now affords both operations, some further control process must operate. Thus Spector and Biederman (1976) concluded from a series of studies replicating and extending Jersild’s work that “a critical factor in a mixed list... is whether an item unambiguously cues the operation it requires... [there will be no switch cost] as long as each item unambiguously cues the operation, from the set of possible operations, that is to be applied to it” (p. 676). They noted that if, in the mixed +3/-3 condition, the subject was given a cue next to each number which specified the operation to be performed on it, then the switch cost was reduced. They found the cost (mixed minus pure) to be 402ms per item without the cue, but only 188ms when the cue was added. Spector and Biederman also hinted at what they believed the nature of the switch cost to be: “But if the items do not unequivocally cue the operation and one has to remember what he [sic] last did to know what to do next, then a task requiring different operations will slow reaction time” (p. 676). The implication is that the switch cost on ambiguous items reflects an effect of short term memory load: the extra effort required to keep track of the next task slows performance on the current task.

Allport, Styles, and Hsieh (1994) carried out a number of studies comparing performance on pure and mixed lists. Their conclusion was that switch costs quite explicitly did not reflect the time taken to reconfigure the cognitive system for the next task. If switch costs were to reflect reconfiguration processes, presumably these would have to be launched by a central controller. Allport et al’s conclusion is thus consistent with Allport’s view (1989, 1993) that the notion of a central controller is unnecessary. Allport et al used ambiguous stimuli which afforded potentially different responses according to two dimensions. An example of such an item would be a stimulus in the standard colour-word Stroop task, where subjects can respond either to the colour name, or to the colour of the ink in which the word is written. Subjects were required to switch between the stimulus dimension to which they were paying attention, and also between one of two responses which they had to make according to the value of that dimension. The authors demonstrated that the switch cost (mixed minus pure) caused by alternating both stimulus dimension and response was no greater than that taken when just the stimulus dimension, or just the response had to be alternated. They also noted that switching between non-dominant (slow, poorly practised) tasks generated no greater costs than switching between dominant (fast, well-practised) tasks. Thus manipulations which might have been expected to place greater or lesser demands on the hypothetical central controller, appeared to have no effect on the size of the switch cost. These results were taken to undermine the notion that the switch cost reflected a reconfiguration process.

Further evidence led Allport et al to propose an alternative hypothesis. In a task which required subjects to switch between operations unambiguously cued by the stimulus - where one might expect no switch cost - Allport et al found a significant cost of mixed over pure. However, subjects had previously been required to switch between two other tasks, using the same type of stimuli. The stimuli were thus ambiguous to the current versus previous task, if not to the two tasks active in the current situation. Moreover, as subjects continued further into the set of trials, so that the previous ambiguous task-sets became more distant and less salient, the switch costs reduced or disappeared.

On the basis of this evidence, Allport et al suggested that switch costs might reflect interference from previously active task sets, an effect which they called Task Set Inertia. From their data, it appears this effect falls away over the course of between 10 seconds and a minute. Finally, in support of their theory that switch costs do not reflect the time course of a reconfiguration process, Allport et al varied the inter-trial interval on the mixed lists. If subjects do need some fixed amount of time to reconfigure their task sets, then extending the inter-trial interval (ITI) beyond this time should eliminate the switch cost. Yet Allport et al found no significant reduction in switch cost as the ITI increased from 20ms to 550ms and 1100ms.

The idea of Task Set Inertia is consistent with Norman and Shallice’s notion of self-activating schemata, damped down or encouraged by a separate control system. Recall that schemata are triggered by the presence of the relevant stimulus. If two schemata are triggered by the same stimulus, they will compete on the basis of their respective levels of activity, leading to a winner but slower response times. Their level of activity will be determined by the frequency of association between the stimulus and the operations, but also by the recency of their usage. The task set inertia explanation may be seen as equivalent to competition from previously used schemata which have also been triggered by the current stimulus.

Rogers and Monsell (1995) introduced a new experimental method for examining switching costs, which they called the alternating runs paradigm. Rogers and Monsell suggested that the pure lists versus mixed lists paradigm is flawed for two reasons. Firstly, the mixed condition is doubly harder than the pure condition, since the subject not only has to have two tasks ready for use, but also has to switch between them. Secondly, if mixed lists are harder than pure lists, subjects might pay more attention when performing them. In the alternating runs paradigm, for two tasks A and B, subjects are required to switch between the tasks on alternate trials, e.g. AA/BB/AA/BB/AA/BB. This paradigm permits a direct comparison between non-switch trials (those preceded by a same task item) and switch trials (those preceded by a different task item) under the same conditions.

In their experiments, Rogers and Monsell used letter and number stimuli, plus some neutral stimuli (#, ?, *, and %). Subjects were required to decide whether the letter was a consonant or a vowel (Task A) and whether the number was odd or even (Task B). They used the same two fingers to produce the responses in each task. The task they were required to perform on each trial was predicted by the AA/BB regime, and also cued spatially. Each stimulus comprised a pair of symbols. The pair consisted of either a letter plus a neutral stimulus (e.g. D%) or a number plus a neutral stimulus (e.g. #5), which formed the NO-CROSSTALK CONDITION; or both a number and a letter (e.g. D5) which formed the CROSSTALK CONDITION. Within the Crosstalk condition, the responses predicted by the letter and number could either complement each other (i.e. tend to trigger the same finger response), called CONGRUENT trials; or predict different responses, called INCONGRUENT trials. Some neutral stimuli also appeared in the Crosstalk condition as a control.

Using this design, Rogers and Monsell demonstrated that there was both a reaction time and an accuracy cost of switching between the two tasks (as measured by the difference in the mean performance on switch and non-switch trials). In the Crosstalk condition, non-switch performance on both tasks was slower, and switch costs larger. This was also the case for neutral trials included in the Crosstalk condition, suggesting that background ambiguity of task set led to slower responses and slower switching. This is consistent with Allport et al’s Task Set Inertia hypothesis. The crosstalk - that is, the response predicted by the task-irrelevant information - could either reinforce the response for the task-relevant information (congruent), or hinder it (incongruent). This distinction did not appear to make a great deal of difference. The mere presence of crosstalk caused base rate responses to increase from 645ms for neutral trials to 760ms for crosstalk trials, and switch costs to increase from 210ms for neutrals, to 310ms for congruent trials and 350ms for incongruent trials. With regard to the bilingual lexical system, it is important to note here that the Crosstalk condition demonstrates how between-task similarity effects can impact on performance. A stimulus that supports responses in both tasks interferes with control operations.

Rogers and Monsell demonstrated two further results of interest. Firstly they compared the AA/BB design with a design that required subjects to perform four consecutive trials in each task, thus AAAA/BBBB/AAAA/BBBB. They found that the cost of switching fell entirely on the first trial where a switch in task was required. Secondly, they varied in the inter-trial interval (ITI) in the AA/BB paradigm, and found that the switch cost reduced by a third as the ITI extended from 150ms to 600ms. But thereafter, it dropped only a further 15ms to 115ms as the ITI extended up to 1200ms. Although Allport et al found no significant drop in switch cost as ITI increased, the pattern of their data is consistent with that found by Rogers and Monsell.

Rogers and Monsell interpreted their data as suggesting that the switch cost has two components. One of these reflects endogenously or internally driven task set reconfiguration. If the switch of task is anticipated, subjects may attempt to reconfigure their systems in advance. Inter-trial intervals of about half a second allow the switch cost to be reduced by about a third. However, a substantial switch cost remains. This Rogers and Monsell ascribed to an exogenous component of the reconfiguration process; that is, one triggered only by a task relevant stimulus.
 The split between endogenous and exogenous components of the switch cost again offers us the distinction between operations triggered by the stimulus, and a separate control mechanism which allows such representations to be activated or inhibited as necessary.

In a similar paradigm, Meiran (1996) used a cue to tell subjects which of two tasks to perform on an upcoming target. She showed that the (randomly varying) interval between the cue and target was important in determining the switch cost - shorter interval, larger cost - but that the inter-trial interval on its own was not. She concluded that the switch cost was related to task preparation rather than a carry-over effect from the previous trial, and that it indicated “a time-effort consuming process that operates after a task shift, precedes task execution, and presumably reflects the advance reconfiguration of processing mode” (p.1423).

Thus far, we have reviewed five studies that have investigated control processes through performance costs in switching between tasks. These studies suggest that such cost may comprise three components, and perhaps more: an endogenous, internally driven task-set reconfiguration; an exogenous, stimulus driven task set reconfiguration; and an exogenous, background effect of the raised activation of previously used task sets.

There is further evidence that switching may include yet another exogenous component, relating to the perceptual processes operating on the stimulus. Using a tachistoscopic recognition task, Corcoran and Rouse (1970) demonstrated that mixed blocks of hand-written and typed cards led to slower recognition than pure blocks of either type. Using number stimuli degraded in two qualitatively different ways, Los (1994) demonstrated that mixed blocks led to slower recognition times than pure blocks, even when the subject had prior knowledge of the nature of the forthcoming stimulus. Such mixing costs were found to be concentrated on the trials where the stimulus quality was different from that of the preceding trial, supporting the notion of a further stimulus driven performance cost of switching. The cost presumably reflects the time taken to alter the processes by which the stimulus is recognised.

We may now summarise the conclusions of this section. We proposed that self-activating and competing independent representations might account for between-task similarity effects. We sought to explore whether empirical evidence on the control of representations supported this view. On investigation of this area, we found it to be relatively unexplored and the theories not yet mature. We found three different sources of information converging on the same theme. These sources were the evidence from the failures of control, notably capture errors and utilisation behaviours; Norman and Shallice’s model of attention and control; and studies specifically investigating control using the task switching paradigm. The theme was that task control is a combination of self-activating representations and internally driven, goal-oriented control processes. The task switching studies suggested that the stimulus driven component might be the greater of these two. We have thus established that, on first pass, our hypothesis on the nature of the bilingual lexical system is a sensible one. We may now turn to look at the literature on the control of language representations in bilinguals.

The Nature of Control Processes II: The control of a bilingual’s language representations.

The studies that have directly examined the control of bilinguals’ language representations are also somewhat limited. There is some further indirect evidence which has been oriented towards the narrower goal of evaluating the Input Switch Hypothesis. We will first examine the direct evidence. This will comprise three parts: visual word recognition, speech recognition, and speech production.

Visual Word Recognition.

Grainger and Beauvillain (1987) had French-English bilingual subjects perform a lexical decision task on lists of stimuli. There were four lists, one of French words plus nonwords, a second of English words plus nonwords, and two lists with a mixture of English and French words, plus nonwords. All stimuli were initially orthographically legal in both languages. Subjects were instructed to respond Yes whenever they identified an item as being a word in either language. They were informed that the items for all lists had been selected at random, and so were not aware that any list could consist solely of words from a single language.

The results showed that reaction times were longer on mixed lists than on pure lists. Moreover, closer analysis revealed that the difference was not due to generally slower response times on mixed lists. The higher reaction times in the mixed lists occurred only when the preceding item was from the other language. The additional cost of this change in language was 55ms for French words (L1) and 46ms for English words (L2). In a second experiment, Grainger and Beauvillain compared lists of words where the orthography was ambiguous between the languages, against lists where the words contained orthographic patterns specific to their language. Nonwords were always language ambiguous. They found that the advantage of pure lists over mixed disappeared when language specific orthography could identify stimuli as words. For L2, the reduction in switch cost for language specific orthography only appeared after 2 of the 4 lists were completed, suggesting some tuning was necessary to take advantage of this information source.

Overall, Grainger and Beauvillain comment: “when the preceding item in the mixed lists is a same-language word, none of the observed differences between pure and mixed reaction times is significant, for each modality of the language and orthographic factors” (p. 310). These results show a very similar pattern to the task switching studies we have reviewed. Reaction time costs were incurred when switching language, and these costs were isolated to the first item when a switch in language was required. Costs were reduced or eliminated in the presence of cues which uniquely specified the operation to be performed on them (in this case recognition and lexical decision according to a word’s home lexicon). 

In this study, subjects were required to respond whenever an item formed a word in either language. An optimal strategy would have been for the subject to keep both lexicons simultaneously activated, and to respond Yes whenever either lexicon recognised a word. This strategy would predict no disadvantage of mixed lists over pure. That such a disadvantage was found suggests either that subjects could not keep both their lexicons simultaneously activated, or that they could not configure their response mechanism to generate responses according to the activation of both lexicons at once.

The apparent requirement for subjects to switch between languages during the bilingual lexical decision task, and the sensitivity of switch costs to orthographic features, is echoed in two findings using the paired lexical decision task. In this task, subjects have to respond positively if both of two items presented are words. When the two words are from different languages, reaction times are longer (Meyer and Ruddy, 1974, using English and German) unless each item’s language membership is uniquely specified by its orthography (Kirsner, Smith, Lockhart, King, and Jain, 1984, using Hindi and English) (although see Footnote 8 in Chapter 3).

Mason (1994) extended Rogers and Monsell’s alternating runs paradigm to a bilingual semantic categorisation task, using English-French bilinguals. Subjects had to classify words as being animate or inanimate, whilst switching language every other trial. Mason found no cost of switching language, either in speed or accuracy. He also varied the inter-trial interval between 100ms and 1500ms, and again, no effect of switching language was found. (Mason does not comment on the orthographic characteristics of the stimuli, other than that cognate translations and homographs were excluded.) Caramazza and Brones (1980) reported a similar finding using pairs of words, with Spanish-English bilinguals. The absence of a switch cost in tasks tapping semantic information is a very suggestive one, and we will return to it at the end of this section.

Speech Recognition.

Grosjean (1988) has explored aural word recognition in French-English bilinguals. Grosjean presented subjects with English words embedded in French sentences (described as “guest” words). Subjects were played the introductory part of the sentence in French, and then played the target word. The could either be a French or an English word. If it was an English word, it could be pronounced using standard English pronunciation, or using French pronunciation. Subjects were initially played just the first 40ms of the target word, and asked to make guesses about the identity of the word. They were then played the first 80ms, and asked to make further guesses. This procedure continued in increments of 40ms until the subject had recognised the word. Using this “gating” procedure, Grosjean explored the factors determining how quickly the word was recognised, and the word candidates that subjects suggested at each point. Subjects always showed a base language effect, whereby they would take longer to recognise words in a different language to the initial part of the sentence. This effect was also found by Soares and Grosjean (1984), using the Phoneme Triggered Lexical Decision task. The following factors also influenced recognition times for guest words: whether the sounds of the word were unique to its language; whether there existed a homophone (same sounding word) in the base language; and whether the guest word was pronounced using the phonetics of the base or guest language. If the base language did possess a homophone of the guest word, the respective frequency of the homophone in each language was important. If the guest word had a higher frequency in English than its French homophone, it was recognised more quickly. Li (1996) has replicated these findings using Chinese and English.

In speech recognition, again, we witness a cost of switching between two languages. Furthermore, the cost is sensitive to the characteristics of the stimulus, and its status in each language. Grosjean reports that the use of language specific phonotactic characteristics did not eliminate the base language effect (the switch cost). However, there is evidence that aural switching may also reflect the reconfiguration of lower level perceptual processes, as outlined previously. Elman, Diehl, and Buchwald (1977) investigated the perceptual categorisation of Spanish-English bilinguals and monolinguals. Monolinguals of each language showed different perceptual categorisation characteristics when listening to identical natural speech sounds. Balanced bilinguals demonstrated the different characteristics of monolingual of each language, when listening to the speech sounds in each language context. The necessity of reconfiguring perceptual processes to comprehend the sounds of each language would account for the inability to eliminate the switch cost even when the stimulus unambiguously cues its language membership. This might be expected given that speech is noisy compared to type written text.

Speech Production.

There is no necessity that the control mechanisms operating during speech production are the same as those operating during comprehension. We will briefly review the evidence here for completeness, but also because models have suggested that similar mechanisms may underlie both situations.

Recall that in the Bilingual Interactive Activation model of word recognition (Grainger and Dijkstra, 1992; see Chapter 3, part two), a node for each language could raise or lower the base rate activation of the word units within that language. This is a control mechanism to bias the recognition capabilities of the system according to language context (in fact it is a form of input switch).

Green (1986) proposed a model of the control of speech production in bilinguals. This was based both on evidence from control errors generated by normal bilinguals, and performance of bilinguals with brain damage who showed language control impairments. Green’s model was also based on an activation metaphor. There are separate sets of representations for each language. A word name is generated when the activation of its node exceeds threshold. Excitation coming from semantics raises the relevant word above its threshold in normal production. Control is effected by a separate “specifier” or central controller, which allows the language of output to be selected. This controller raises or lowers the base rate activations of whole languages (although Green suggests it has limited ‘resources’ to do so, leading to control errors under certain situations). This scheme allows production to proceed in a single language. However, a code-switched word from the context inappropriate language may also be produced where its semantic relevance is such that its activation from semantics exceeds the inhibition from the central controller.

Thus both word recognition and word production models have been put forward that employ activation biasing of localist word nodes as a control mechanism. Studies that have looked at the control of languages during production have found that behavioural characteristics appear to differ depending on whether language shifts are cued or occur naturally during discourse.

Meuter (1994) required English-French bilinguals to perform a speeded naming task with single numerals in either language, where language was cued by the colour of the background on which the numeral appeared. Meuter found the usual pattern of a time and accuracy cost of switching between languages. The cost was isolated to the first trial after a switch of language, and in this instance was between 50 and 150ms. Interestingly, Meuter found greater reaction time costs for the bilinguals to switch into their better language than into their weaker language.

This voluntary, cued form of switching the language of production shows a different character from more naturalistic studies of production. Grosjean and Miller (1994) examined in precise temporal detail the voice onset times (VOT) for consonants at the beginning of English guest words inserted into French stories, which subjects were asked to read out loud. They compared these data with VOT for the same words read out loud in an English story. The results showed that switches in pronunciation from one language to the other were extraordinarily precise, with no sign of the base-language effect that Grosjean found in comprehension. The switches appeared to be immediate, both into English and back into French after the guest word. The guest words used were the names of characters in the stories, rather than random words, which could have disrupted syntactic structure. Under these conditions, and unlike in the Meuter study, language switching showed no performance cost. Instant language switches would not appear to be consistent with Green’s notion of a central controller, unless one makes additional assumptions about anticipation of switches in naturalistic conditions. This is where we will leave commentary on control processes in production.

Evidence relating to the Input Switch Hypothesis.

The remaining evidence concerning the control of bilingual lexical representations comes from studies which have attempted to evaluate the notion of Input and Output Switches. This evidence is reviewed in detail in Chapter 3; here we will summarise the conclusions. These studies have generally shown that subjects cannot selectively access a single language when processing an input. This has been found both using bilingual Stroop tasks, and the lexical decision task. The empirical study in Chapter 8 produced further evidence in line with this view: in the language exclusive lexical decision task, words appearing in the wrong language context were rejected much more slowly than nonwords. The bilingual Stroop studies once more suggested that between language similarity plays a role in access. Words in the distractor, task-irrelevant language that were more similar to words in the task-relevant language produced more cross-language semantic interference (e.g. bleu/blue compared to jaune/yellow for French and English) (Magiste, 1984). The amount of cross-language interference also appeared to be sensitive to the orthographic similarity of the two languages used in the experiment (Fang, Tzeng, and Alva, 1981).

A preliminary hypothesis of control processes acting in the BIN model.

We will attempt to summarise the findings on the control of bilingual lexical processing by outlining a preliminary model.

Grainger and Dijkstra (1992) compared the relative merits of employing language as an active representational element in bilingual serial and interactive activation models, against using it as passive information. They concluded that it must serve an active role (see Chapter 3, part two). In a serial model, this translates to separate lists for each language, in an IA model, it translates to separate language nodes controlling the activity of the word units of that language. Control processes would privilege access to the words of one or other language, dependent on context.

However, this notion of a graded or partial input switch is inconsistent with evidence from the bilingual Stroop task, where recognition in the context-irrelevant language cannot be suppressed. On the other hand, the BIN model specifically requires the context-irrelevant language to be active in order to generate between language similarity effects. In Chapter 8, we saw that cross-language priming data did not give unambiguous support for this notion, since a preview of a word in the wrong language context did not always lead to priming when it was later recognised in the correct language context.

If we assume that both of the independent networks are active during recognition in either language, then we must account for the cost of switching between languages in the lexical decision task. Here, it is an important result that switch costs are found for lexical access, but not when using a semantic categorisation task. If the bilingual has separate lexical representations but common semantic representations, then the switch cost may reflect response reconfiguration. Assuming that the response mechanism can only be configured to respond positively to information coming from one information source at a time (as evidenced by the Grainger and Beauvillain result)
, a switch would be required between the separate lexical representations. The response weightings to semantics, however, could remain constant. Figure 9.1 illustrates this idea.

Two more assumptions would be necessary. Firstly to fit the characteristics of the switch cost, the change in response weightings between the separate lexical representations would have to happen on a single trial and for a whole lexicon. Secondly, the reconfiguration of response weightings would have to be launched by a process driven in part by the nature of the stimulus on the switch trial, so that language specific orthography could influence the process. We will return to evaluate this model in the light of experimental results at the end of the next chapter. With regard to the claims of the BIN model, those results must show the influence of between language similarity patterns in the stimulus, during control operations. If switch costs are independent of such patterns, then the claim that the BIN model can pin an explanation of similarity effects on control processes is significantly weakened. The alternative that they reside in the nature of the representations, espoused by the BSN model, becomes stronger.

Figure 9.1: Preliminary model of the control processes underlying switch costs in the Bilingual Independent Networks model.


Conclusions.

We started this chapter with an alternative hypothesis that between language similarity effects in bilingual visual word recognition might arise from the control processes accessing independent representations. We are now in a position to evaluate our alternative hypothesis. We have found that there are costs to switch language when lexical information is to be accessed. We have suggested that these reflect control processes, but we have seen that there is some debate as to what aspect of control switch costs reflect. Switch costs may potentially comprise a number of components: costs arising from endogenous, internally driven reconfiguration processes; costs arising from exogenous, stimulus driven reconfiguration processes; a background effect of the salience of previous reconfiguration patterns; and the configuration of appropriate perceptual processes in the face of noisy input. We have examined relevant bilingual data, and seen some support for between language similarity factors in language switching. However, no study offered a direct examination of this issue. For example, no study has looked at whether switching costs are greater when a trial contains a word existing in both languages compared to a word existing in just one. Given that Rogers and Monsell showed that stimuli affording responses in both their simple tasks generated slower and less accurate responses, this is a strong prediction. The Rogers and Monsell paradigm offers a controlled and systematic tool for the direct examination of the control processes in accessing lexical information from each of a bilingual’s languages. In the next chapter, we will use this tool to examine the control processes operating over bilingual lexical access, and so to evaluate the Independent Networks model of bilingual lexical processing.

Chapter 10.

Empirical Investigations of the control processes operating on bilinguals’ lexical representations.
Introduction.

In this chapter, we will introduce two empirical studies using English-French bilinguals. These studies examine the factors which affect the ability of bilingual subjects to bring to bear knowledge of one language over another, in performing a given task. We are particularly interested here in whether we can find signs that between language similarity affects control. The two experiments used a version of the lexical decision task where subjects were required to alternate between their two languages when deciding whether a given string formed a word, according to the currently active language.

Grainger and Beauvillain (1987) employed a similar bilingual lexical decision paradigm. However, in their study, the words from each language were intermixed, and subjects were required to respond positively if the stimulus was a word in either of their languages. We will refer to this paradigm as the language inclusive lexical decision task. In the current studies, subjects were required to switch between languages according to Rogers and Monsell’s alternating runs paradigm; that is, a switch of language was required every other trial. Subjects were additionally cued as to the currently active language by a coloured background. They were required to respond positively only when the stimulus formed a word in the currently active language. We will refer to this task as language exclusive lexical decision.

The first of the two studies described here investigated the role of lexical status in controlling responses according to each language. The possibility of subjects using orthography as a cue was eliminated by having all stimuli - words and nonwords - form orthographically legal strings in both English and French. Subjects were thus forced to respond only according to whether a given item formed a word in the currently active language. However, items could possess different degrees of between language similarity. They could be:

1. words only in the currently active language (e.g. English: RAIN, French: BAIN);

2. words in both languages, possessing the same meaning in each language, i.e. Cognate homographs (e.g. TRAIN, TABLE);

3. words in both languages, but possessing a different meaning in each language, i.e. Non-cognate homographs (e.g. PAIN, MAIN);

4. words existing only in the currently inactive language;

5. letter strings which form orthographically legal patterns in both languages but exist in neither (e.g. SARE, MATION).

Groups 1-3 should generate positive responses; Groups 4-5 should generate negative responses. We can make the following predictions: If between language similarity affects control, we might expect that homographs will interfere with re-configuration processes and cause larger switch costs. Secondly, if a lexicon attempt to activate itself and generate responses when it recognises an item, the presentation of a word in the wrong language context might also interfere with the re-configuration process, causing a larger switch cost.

The second study investigated the role of orthography in controlling responses according to each language. There were now no stimuli which were words in both languages. However words and nonwords could have orthographic characteristics of one, other, or both languages. They could be:

1. words in the currently active language possessing orthographic characteristics common to both languages (e.g. English: CARE, French: USINE);

2. words in the currently active language possessing orthographic characteristics specific only to the currently active language (e.g. English: ROCK, French: NEUF);

3. words in the currently inactive language, possessing orthographic characteristics common to both languages;

4. words in the currently inactive language, possessing orthographic characteristics specific only to the currently inactive language;

5. nonwords according to these four schemes (e.g. both: SANT; English only: DOOF; French only: TIEUX).

Groups 1-2 should generate positive responses; Groups 3-5 should generate negative responses. Our prediction here is that language specific orthographic characteristics should aid re-configuration processes, and thus reduce the switch cost.

As part of this project, a preliminary investigation was carried out into the bilingual language switching lexical decision task. This study did not use appropriately balanced word stimuli, and so is not included here. However, it did employ a set of orthographically illegal nonsense strings as stimuli (e.g. NKYTSF). For these stimuli, balancing factors are not relevant. The results showed that, whilst there was a cost of switching between languages when responding to words and pseudowords, there was no cost for the subjects to switch language of response when rejecting nonsense strings. This effect was highly significant
. These data suggest that, in as much as we can consider the switch cost an indication of the control of lexical representations, control is intimately linked with the language characteristics of the stimulus. If a stimulus has characteristics of neither language, then there is no switch cost. Let us now examine whether aspects of between language similarity affect this measure of control.

Experiment 1. The effect of lexical status on switch cost.

Subjects.

The subjects were 21 English-French bilinguals, recruited from the Oxford Subject Panel. Their age ranged from 18-45. Approximately half of the subjects possessed English as their first language. Subjects were required to have studied their second language at least until the age of 18, and most were also studying it at university level. There were also a number of French nationals who were working as researchers at Oxford. For these subjects, French was their first language, but in addition to education, they had been using English on a day to day basis during their time in Oxford. Following a procedure to balance subject groups (see below), the data from 16 of the subjects were used.

Task.

The task was lexical decision in two languages. Subjects had to switch regularly between languages, and on each trial, respond Yes if and only if the stimulus was a word in the currently active language. The aim was to derive the time costs for subjects to switch between responding according to their French lexicon and responding according to their English lexicon, and to examine whether these costs would be affected by the nature of the stimuli.

Design and Stimuli.

The subject was presented with a practice block of 96 lexical decision trials and four test blocks of 100 trials (a total 496 trials). Through each block of trials, the regular order of presentation was:


English lexical decision (Switch trial)


English lexical decision (Non-switch trial)


French lexical decision  (Switch trial)


French lexical decision  (Non-switch trial)
Subjects were cued to the active language both by the regular regime but also by the colour of the background on which the stimulus appeared. English lexical decisions appeared on a blue background. French lexical decisions appeared on a red background. The order was repeated 24 times in the practice block and 25 times in each test block. The first four trials of each test block contained filler items, for which the data were discarded.

Stimuli were selected to fill the five groups, as detailed in Table 10.1. The Non-cognate homographs that were identified for use in the experiment had entirely unrelated meanings in English and French. This was the most difficult stimulus set to construct. The respective meanings of these homographs in each language had different frequencies: overall, the French meanings had higher frequencies than the English meanings. Thus for the word stimulus sets, a difference of language was compounded with a difference of frequency. (Frequency-balanced stimulus sets were, however, used in Experiment 2).

Table 10.1: Stimulus types in Experiment 1.

Group
Type
Examples
Exists in English?
Exists in French?
Homograph has same meaning in each?
Presented in correct language context?
Correct Response
Number in group



1
Non-cognate homographs
FIN

COIN
Yes
Yes
No
-
Yes
32

2
Cognate homographs
TRAIN

TABLE
Yes
Yes
Yes
-
Yes
32

3
Singles
RAIN
Yes
No
-
Yes
Yes
32



BAIN
No
Yes
-
Yes
Yes
32

4
Wrong Context
CHEVAL
Yes
No
-
No
No
32


Singles
SUMMER
No
Yes
-
No
No
32

5
Nonwords
SARE

MATION
No
No
-
-
No
128

Groups 1-4 were matched using the indices of word frequency (Kucera-Francis) and imageability (from Quinlan, 1994). As in the priming experiment, the ratings for French words were derived from English translation equivalents. The word sets were constructed as follows. Three words were matched to the English meaning of each Non-cognate homograph: an English Cognate homograph, an English Single to appear in the correct language context, and an English Single to appear in the wrong language context. Three French words of each type were then found to match to the French meaning of the Non-cognate homograph. Nonwords were derived by changing internal vowels in Cognate homographs not used in the experiment. The stimulus sets are included in Appendix B. Relative bigram and trigram counts for these items according to English and French corpuses are shown in Appendix C. These measures give an indication of how orthographically characteristic the nonwords are of each language. Their derivation is explained in Experiment 2.

If we attempt to measure the switch cost for a given word by presenting it to the subject once on a non-switch trial and once on a switch trial, then we risk confounding any effect of switching language with a repetition priming effect. To avoid this confound, two subject groups were used, one which would see an item on a non-switch trial, one which would see it on a switch trial. It was important to balance the language skills of the groups so that performance on each trial type could be directly compared.

To derive the switch cost for English and French trials, we would require four subject groups. Instead, each stimulus set of 32 words was split into 2 balanced subsets of 16. With a stimulus set split into subsets A and B, Group 1 could see A in the English non-switch position, and B in the French switch position, and Group 2 could see A in the English switch position, and B in the French non-switch position. So long as the subject groups were balanced, this would allow us to derive switch costs for each stimulus type in English and French language contexts from the two subject groups.

To achieve the balancing of the subjects groups, a further set of Singles was included. There were 32 in each language. Both subject groups saw these items in the same language and trial context. Performance on these items was then used to balance the subject groups.

The presentation of the stimuli was randomised in the following way. Four sets of slots were created, one for each of the following contexts: an English Non-switch trial, an English Switch trial, a French Non-switch trial, a French Switch trial. Words to appear in a given context were pooled together and allocated at random to the appropriate slot. In this way, while the context of a given word was fixed, it could appear in any position throughout the four test blocks in the experiment. Nonword stimuli were randomly assigned to an English or French, non-switch or switch context, for each subject.

The practice block consisted of items in the same overall proportions as those appearing in the test blocks, and included examples of all stimulus types. The experiment comprised an equal number of items presented in an English and in a French context and an equal number of stimuli requiring YES and NO responses.
Procedure.

The subject was seated 50cm away from a computer monitor. Individual items were presented in the centre of the monitor. A 286 PC, with a timer card and external response keypad (with a refresh rate of less than 1ms), was used to present the stimuli and run the experiment. The stimuli were presented sequentially, and appeared in a 5.6cm by 2.8cm coloured rectangle in the centre of the screen. The stimuli were typed in white uppercase characters 0.8cm high, without accents. The language of response was coded by the colour of the background, blue for English and red for French. The stimuli remained on the screen until the subject responded by pressing either the YES or the NO key, at which time their response and reaction time were recorded. There was then a 600 millisecond inter-trial interval before presentation of the next stimulus. 

The inter-trial interval was set at 600ms in order to focus on the exogenous component of the switch cost, as identified by Allport, Styles, and Hsieh (1994) and by Rogers and Monsell (1995). After an interval of this length, the residual switch cost if any should be determined by features of the stimulus alone.

Subjects were allowed a short break between each of the 5 blocks of trials. The experiment, excluding time given to convey instructions, took 30 minutes to complete.
Instructions.

The nature of the lexical decision task was explained to the subjects. They were told that they would be performing this task in French and in English, depending on the colour of the background. If the stimulus appeared on a blue background, they were told to press the YES button if the stimulus was an English word, and the NO button if the stimuli only resembled an English word, or if the stimulus was a word that existed in French but not in English. They were given the following example: If the stimulus was POMME on a blue background, they should press NO.

If the stimulus appeared on a red background, they were told to press the YES button if the stimulus was a French word, and the NO button if the stimulus only resembled a French word, or if the stimulus was a word that existed in English but not in French. They were given the following example: If the stimulus was APPLE on a red background, they should press NO. They were informed that items could exist in both languages, in which case they should press the YES button whatever the colour of the background.

With regard to errors, subjects were asked to go as quickly as possible, and to try not to make any mistakes. They were informed that a few mistakes were acceptable, since it demonstrated that they were trying, but that errors should occur at a rate of no more than 1 error per 10 trials. A mistake was defined as the subject realising as soon as they had pressed a response key that this response was incorrect. If they made no mistakes they would be going too slowly, and more than one in 10, too quickly. They were instructed to ignore any mistakes they did make and to carry straight on with the next trial. 

Results.

Overall Analysis.

Twenty one subjects were initially tested. In order to balance the subject groups, median reaction times on the filler words were compared. For these stimuli, both subject groups saw identical items in identical contexts. To achieve balanced groups, data from five subjects were not used in the final analyses. Median times on the English fillers were balanced to within 1 millisecond for the two groups (770 and 771ms) and on the French fillers to within 2ms (707 and 709ms). The groups had a similar distribution of proficiencies in each language. In the following analyses, there were 8 subjects in each group.

Overall subject analyses were carried out on the mean reaction times
, the median reaction times, and the error rates, for each stimulus type in each trial context. Repeated measures analyses of variance for the means, medians, and errors showed no main effects of Subject Group at the 0.05 level, nor interactions with any other factors. Data from the groups were thus pooled in further analyses.

The mean response time over all items (words and nonwords) was 980ms, and response accuracy 72.5%. This is a high rate of errors: a response accuracy nearer 90% would have been preferable, but the alternating runs paradigm for language switching was clearly fairly difficult. However, in general, error rates did not interact with the non-switch / switch trial distinction. There were no speed-accuracy trade-offs that concern our principal measure of interest. 

Subjects showed faster and more accurate responses for French words than English words (970ms and 70.3% versus 987ms and 66.8%). However, the difference in language performance was not significant (means: F(1,14)=0.53, p=0.479; errors: F(1,14)=1.32, p=0.269). For the purposes of this experiment, the set of subjects as a whole was considered as being balanced in the two languages (although later, we will also look at the language dominance of individual subjects).

Switch Costs for each Stimulus Type.

The language switch cost was derived by comparing performance on non-switch trials (those preceded by a trial in the same language context) with that on switch trials (those preceded by a trial in the other language). Both subject and item analyses showed a significant reaction time cost was incurred to switch language (subject analysis of means: F(1,14)=42.41, p<0.001; item analysis of all responses pooled across subjects: F(1,4)=42.00, p<0.001). On average, subjects took 921ms to respond on a non-switch trial, and 1040ms to respond on a switch trial, a cost of 119ms. An analysis of error rates showed a performance cost of 1.4% to switch languages. However, this difference was not significant (F(1,14)=1.88, p=0.192).

Figure 10.1 shows the mean reaction times for each stimulus type, on non-switch and switch trials. (These means are taken from the item analysis, with data pooled over subjects. This was considered the more powerful method to examine switch costs for each word type. Henceforth all results will be from the item analysis unless otherwise stated). Figures 10.1b) and c) show the results split into Yes-responses and No-responses with regard to the language exclusive lexical decision task. The error data reveal some evidence of a speed-accuracy trade-off with regard to words and nonwords. Singles appearing in the correct language context generated faster responses than nonwords; however, nonword responses were more accurate. This trade-off suggests that we are not licensed to make strong inferences on the basis of differences between word and nonword responses; however, since such inferences are not a central concern of these studies, we will simply note that this trade-off is apparent.

i) Comparison of Singles and Homographs.

Singles showed overall faster reaction times than words possessing forms in both languages, both on non-switch and switch trials (main effect of word type, F(1,4)=27.81, p<0.001). Given that the word sets were balanced, this result suggests that between language lexical status caused slower responses, even when subjects were not required to switch language.

Rogers and Monsell found that items with a status in both of the tasks generated larger costs when switching between the tasks. However, while the data are consistent with that view, the RT difference was not a significant one (F(1,6)=2.20, p=0.138). For Singles, the switch cost was 110ms, for Cognate homographs, 188ms, and for Non-cognate homographs, 135ms. The error data on the other hand did demonstrate larger accuracy costs for Cognate homographs than for Singles (F1,3)=6.14, p=0.015).

Figure 10.1: Item mean response times for lexical decisions on non-switch and switch trials, for each stimulus type.


ii) Comparison of the performance on Cognate homographs and Non-cognate homographs.

It is not immediately obvious whether we would expect a difference between the performance on Cognate and Non-cognate homographs in the bilingual lexical decision task. For Cognate homographs (TRAIN), the word form should activate the same semantic representation in each language. Non-cognate homographs (MAIN) on the other hand should activate a different semantic representation in each language. But in either case, the word form would be recognised by both lexicons.

In terms of response times, there was no difference between Cognate and Non-cognate homographs on non-switch trials (independent samples t-test, t=0.32, df=346, p=0.750). Nor was there a difference in the switch costs for Cognate and Non-cognate homographs (simple factorial anova, interaction of stimulus type and trial type, F(1,3)=0.62, p=0.430). However, analysis of error rates showed a significant error switch cost for Cognate homographs of 14.1%, but not for Non-cognate homographs (interaction of stimulus type and trial type, F(1,3)=6.03, p=0.017). This suggests that if anything, the RT switch cost for Cognates is underestimated, and that homographs with the same meaning in each language are more damaging to the completion of reconfiguration processes than those with different meaning homographs.

iii) Comparison of Pseudowords with Singles appearing in the Wrong Language Context.

In their study, Rogers and Monsell split their “cross-talk” stimuli (which supported a response in both tasks) into those which would generate the same response in each task (which they called “congruent”), and those that generated different responses in each task (“incongruent”). They found that both types of stimuli resulted in larger switch costs than for neutral stimuli, and that incongruent stimuli showed the largest switch cost. Performance on non-switch trials, however, was the same for both congruent and incongruent stimuli.

Pseudowords and Wrong Context Singles represent a similar case. Pseudowords should generate a No response in both languages, while Wrong Context Singles should generate a No-response in the active language and a Yes-response in the inactive language. Recall that both stimulus types possessed no orthographic features that would cue language membership. Figure 10.1c) shows a comparison of performance on Pseudowords and Singles appearing in the wrong language context. 

The results showed that Wrong Context Singles were rejected more slowly and less accurately than Pseudowords (replicating the results of the priming experiment in Chapter 8), but did not show an increased switch cost (main effect of stimulus type, RTs: F(1,3)=98.32, p<0.001, Errors: F(1,15)=24.37, p<0.001; interaction of trial type and stimulus type, RTs: F(1,3)=0.61, p=0.436, Errors: F(1,15)=0.17, p=0.684). The RT switch costs were 82ms for Wrong Context Singles, 118ms for Pseudowords.

These results did not reproduce the greater switch cost of incongruent stimuli found by Rogers and Monsell, indeed the difference was in the opposite direction. Moreover, the absence of a larger switch cost for Wrong Context Singles poses a problem for the BIN account. If both lexicons are competing for attention on a switch trial, when the switch heads away from the language of which the stimulus is a member, shouldn’t this produce a big cost? We will address this question in discussion following Experiment 2.

Comparison of Performance in each language context.

The stimulus sets were balanced according to frequency and imageability within language but not between the languages. English words were of a lower frequency than French words (20 occurrences per million against 80). Differences between the performance of subjects in on the word sets in each language context could be a result of language dominance, of word frequency, or a combination of these factors. Figure 10.2 shows the mean response times on non-switch and switch trials for each stimulus type, split by language and into Yes and No-responses.

i) Between language comparison for responses to Singles, Cognate homographs, and Non-cognate homographs.

An analysis of the switch costs for the three word groups revealed that there was a larger time cost to switch into performing lexical decisions in a French language context than an English language context (item analysis, simple factorial anova, interaction of language and trial type, F(1,6)=4.30, p=0.038; subject analysis, F(1,14)=7.15, p=0.018). This difference might either result from subjects having marginally superior performance in French, or by virtue of the overall higher frequency of the French words. Nonword response times showed no language difference (item analysis: F(1,1)=0.54, p=0.463), nor a difference in the size of the switch cost (F(1,1)=0.06, p=0.815). Inasmuch as language dominance can be measured by the speed of rejection of nonwords, this suggests that the switch cost difference was a result of frequency rather than language.

Whether the difference in switch costs was due to frequency or language, in either case, it points to the idea that trials on which performance is normally faster seem to generate larger time costs when switch over from the other language context. This is consistent with Meuter’s (1994) finding from bilingual production that switch costs into a subject’s stronger language were generally greater.

ii) Between language comparison of the performance on Cognate homographs and Non-cognate homographs.

The balancing procedure for the stimuli ensured that all word stimuli within a language were balanced on indices of frequency and imageability. Thus for words presented in an English context, a Cognate homograph like CAGE (9 occurrences per million words) would be matched to a Non-cognate homograph like FIN (2 occurrences per million words). For words to appear in a French context, a Cognate homograph would be found to match the French frequency of FIN (410 occurrences per million words), such as POINT (395 occurrences per million words). We might thus expect responses for the two word types to be equal within each language, but perhaps faster in French than in English.

However, as Figure 10.2 shows, the performance on the two types of homograph interacts with the language of presentation (F(1,3)=6.94, p=0.009). In English, where both the Non-cognate homographs and Cognate homographs are low frequency, the Non-cognate homographs (FIN) generate slower responses than the Cognate homographs (CAGE). In French on the other hand, where both are high frequency, the Non-cognate homographs (FIN) are now responded to more quickly than the Cognate homographs (POINT).

These results reveal two words in same language, which are matched for frequency and imageability, behaving differently. This is apparently by virtue of a difference in the status of two words in the bilingual’s other language. We might suggest an interpretation of these data in terms of competition. In English, the Non-cognate homograph has a strong competitor in French, since the French meaning is generally of higher frequency. The Cognate homograph has the same meaning in each language and thus approximately equal frequency. The English reading will experience only medium competition. The Non-cognate homograph thus experiences more competition in an English context and will be slower. Conversely, the French reading of the Non-cognate homograph experiences weak competition from the less frequent English reading. The competition for the Cognate homograph is the same medium level. Thus the Cognate homograph now experiences greater competition, and in a French context, will be slower.

iii) The relation between an individual subject’s language balance and their time costs to switch into each language.

We have seen a greater time cost for subjects to switch into French than to switch into English, and seen that this may be due either to language dominance or to the higher frequency of French words than English words. If the difference arises from language dominance, then we might expect switch costs to vary depending on the language dominance of individual subjects. In the following analyses, we will examine the relation of switch costs to language dominance. There are two possible ways to make this relation: (1) the time cost to switch into a given language might reflect the absolute performance of a subject in that language; (2) the cost might reflect the relative performance of the subject in their two languages. We will evaluate these hypotheses by assuming we can take a subject’s mean response times for all items
 on non-switch trials to reflect their proficiency in a given language. This can then be compared to the mean switch cost to switch into that language.

Figure 10.2: Item mean response times for lexical decisions on non-switch and switch trials, for each stimulus type, split by language and into Yes and No Responses.




(1) If the absolute performance level in a language determines the switch cost, the mean non-switch response time that subjects show in each language should correlate with the switch cost to switch into that language.

Correlation for Word and Nonword Responses
Pearson’s correlation coefficient
p-value

English base rate with English switch cost
0.348
0.187

French base rate with French switch cost
0.271
0.310

These results show that base rate performance in a language did not significantly predict the time cost to switch into operating according to that lexicon.

(2) If the relative performance of a subject in their two languages determines the switch cost, then the difference in base rates should correlate with the difference in switch costs. We can make this clearer with an example. Let us assume that a given subject is very fast in French, responding with small RTs, and slow in English responding with large RTs. Let us assume that (somehow) competition causes the cost to switch into French to be large, and that to switch into English to be small. Here we would expect the difference in base rates to be in the opposite direction to the difference in switch costs. We should thus expect difference in base rates to be negatively correlated to differences in switch costs.

Correlation for Word and Nonword Responses
Pearson’s correlation coefficient
p-value

(French base rate - English base rate) with (French switch cost - English switch cost)
-0.513
0.042

These results show a significant correlation in the predicted direction and are consistent with the view that the relative proficiency of the bilinguals two languages determines the time cost to switch between them. Moreover, subjects appear to incur greater time costs to switch to performance according to the lexicon of their strong language. An interesting result emerges if we examine the preceding correlations separately for responses to words and nonwords.

Correlation for Word Responses
Pearson’s correlation coefficient
p-value

English base rate with English switch cost
0.258
0.335

French base rate with French switch cost
0.145
0.592

(French base rate - English base rate) with (French switch cost - English switch cost)
-0.486
0.057

Correlation for Nonword Responses
Pearson’s correlation coefficient
p-value

English base rate with English switch cost
0.223
0.406

French base rate with French switch cost
-0.147
0.587

(French base rate - English base rate) with (French switch cost - English switch cost)
-0.829
<0.001

Once more, base rate performance does not predict switch cost. However, relative performance on nonword trials was a better predictor of relative switch costs than performance on word trials.

Discussion.

In the Bilingual Independent Networks model, between language similarity effects arise in the way the activity of two separate systems is co-ordinated. Within the current paradigm, we are attempting to bring out these effects by emphasising control in the bilingual lexical decision task. It may be argued that the paradigm creates rather than reveals similarity effects, and we will consider that possibility in the General Discussion following the next experiment. Here we will summarise the similarity effects that the alternating runs paradigm reveals.

Firstly we may summarise ‘base rate’ effects; that is, performance on non-switch trials. The results here indicated that homographs produced longer reaction times than comparable singles. The presence of an identical word form in the other language slowed responses in the current language. The response times of the homographs themselves appeared to be affected by the frequency of the same word form in the other language, as witnessed by the interaction of language context and type of homograph. There appeared to be a competition between the word form in each language, mediated by their respective frequencies. Finally, Singles presented in the wrong context were rejected more slowly than pseudowords, replicating the results of the priming experiment in Chapter 8. These three effects show that the lexical status of the input string in the task-irrelevant language influenced performance on non-switch trials.

Secondly we may summarise effects on the size of the time cost to switch between languages. The switch cost for homographs was not significantly larger than that for Singles. However, there was a trend in this direction (p=0.138), with homographs demonstrating a mean switch cost of 162ms and singles 110ms. The data are thus not inconsistent with Rogers and Monsell’s (1995) finding that task ambiguous stimuli generate larger switch costs. Moreover, Cognate homographs exhibited a significant accuracy cost of switching languages.

More surprisingly, Singles presented in the wrong language context showed no larger switch cost than pseudowords. In the previous chapter we suggested that representations may be self-activating in the presence of the appropriate triggering stimulus. Thus for wrong context presentations occurring on a switch trial, the Single’s representation would attempt to activate itself at the same time as a control process was attempting to configure responses according to the other lexicon. On a trial with a pseudoword, no such self-activation should occur, and thus no interference with the configuration process. Wrong context Singles should show a greater switch cost than pseudowords. The absence of this difference seems to imply that lexicality is not important in determining the switch cost. If a word-like letter string is treated no differently from a word, yet a nonsense string produces no switch cost at all, then orthography must be the dominant factor.

There was a dimension which did affect the size of the switch cost however. Singles and homographs showed a greater switch cost in a French language context. This could have been due to the fact that overall subjects showed greater proficiency in French, or to the fact that the French words were higher frequency than the English words (or some combination of the two). In either case, superior performance according to language or frequency, led to a greater switch cost. The performance of subjects on pseudowords, where frequency was not relevant, showed only a small non-significant (15ms) base rate advantage in French and no reliable difference in the size of the switch cost in each language context. This suggests that frequency contributed to the different sized switch costs for trials with English and French words.

On the other hand, an analysis of the switch costs of individual subjects also showed a contribution of language dominance. The cost to switch into a given language correlated with the relative dominance of the subject’s two languages. This points once more to some form of competition between the languages. If the languages are equally strong, the cost to switch between them will be equal. If the languages are unequal, the costs will be unequal, whereby the stronger language will incur the greater cost. Interestingly, this competition was clearer for responses to nonwords than to words. Once more we have the suggestion that orthography is the important factor in determining the switch cost, rather than lexicality. Indeed, we might suggest that, were the orthography to uniquely specify an item’s language, this might eliminate the switch cost altogether. We will examine this hypothesis in the second experiment.

Experiment 2: The effect of orthographic characteristics on switch cost.

This study employed the same subjects and experimental set up as in the previous experiment. Chronologically it was run shortly before, with a 10 minute break between testing.

Subjects saw items of three types: words, nonwords, and words appearing in the wrong language context. There were three differences from the previous experiment. Firstly, there were no homographs. Secondly, the word sets presented in each language were balanced for frequency. Thirdly, stimuli either possessed orthographic characteristics common to both languages, or characteristics unique to one of them. This included nonwords as well as words and thus permitted a comparison of the effect of orthography on the switch cost in the presence of lexicality (when stimuli are words) or in its absence (when they are nonwords). The experiment was again designed to measure the cost of switching language of response as the stimulus characteristics varied. If between language similarity interferes with control processes, then the lack of it - in the case of language specific orthography - should reduce the switch cost.

Subjects.

As for Experiment 1. The subject groups generated from the balancing procedure in that experiment were maintained for this experiment.

Design and Stimuli.

The subject was presented with a practice block of 96 lexical decision trials, 2 test blocks of 100 trials and one of 60 trials. The regular order of presentation of English Switch / English Non-switch / French Switch / French Non-switch was repeated 24 times in the practice block, 25 times in the first two test blocks and 15 times in the third test block. The first four trials of each test block contained filler items, for which the data were discarded. There were 11 sets of stimuli, as follows.

Table 10.2: Stimulus types in Experiment 2.

Group
Type
Language

membership
Example
Orthography
Presented in correct language context?
Correct Response
Number in group



1
Words
English
PASTE
Non-specific
Yes
Yes
2x16

2
(Singles)
English
ANSWER
Specific
Yes
Yes
2x16

3

French
CANARD
Non-specific
Yes
Yes
2x16

4

French
OISEAU
Specific
Yes
Yes
2x16

5
Wrong Context
English
SMILE
Non-specific
No
Yes
1x8

6
Words
English
BLOOD
Specific
No
No
1x8

7
(Singles)
French
LAPIN
Non-specific
No
No
1x8

8

French
BOUTEILLE
Specific
No
No
1x8

9
Nonwords
-
PITE
Non-specific
-
No
2x16

10

-
DWOLL
Specific
-
No
2x16

11

-
BEUIL
Specific
-
No
2x16

Within each type, word sets (including the pairs of 16) were balanced on indices of frequency and imageability (Quinlan, 1994). Ratings for French words were once more taken from those for the closest translation equivalent in English.

Nonwords were constructed on the basis of questionnaire results. Six bilingual subjects were required to rate a large number of French and English words according to how uniquely characteristic they were of either language. On the basis of these results, word bodies and letter patterns were identified that signalled unique language membership for Specifics, and shared language membership for Non-Specifics.

Latterly, it became possible to evaluate the mean bigram and trigram probabilities for each string. On the basis of an English and a French word corpus
 the frequency of occurrence of each letter bigram and letter trigram was derived for each corpus. When divided by the total number of bigrams / trigrams, this gave a measure of the probability of occurrence of each bigram and trigram in each language. The corpuses did not include information regarding the frequency of usage of each word in spoken or written text, so it was not possible to weight the letter bigrams / trigrams in commonly used words more heavily. Nevertheless, the bigram and trigram probabilities provided another source of information on orthographic characteristics. The mean bigram and trigram probabilities for all experimental stimuli are contained in Appendix C. They demonstrate that the division between Non-Language Specific and Language Specific stimuli was a reasonable one. Interestingly, it turned out that the more intuitive, questionnaire based distinction between Non-specific and Specific orthography produced larger effects in the response times for English and French than distinctions based on either bigram or trigram frequency count. This suggests that salient differences between the languages lie in higher order letter combinations.

Two matched subject groups were again employed, and stimulus groups split into matched halves. This 2x2 design allowed the same words to be presented in non-switch and switch contexts for their appropriate language, and nonwords to be presented in both English and French, and non-switch and switch contexts. The practice block was composed of the same balance of stimuli as the test blocks, and the randomisation procedure was the same as that used in Experiment 1.

Procedure.

The procedure was identical to that used in the previous experiment.

Instructions.

The instructions were the same as for the previous experiment, except that subjects were told that there would be no stimuli which were words existing in both languages.
Results.

Overall analysis.

Overall subject analyses were carried out on the mean reaction times
, median reaction times, and error rates for each stimulus type in each trial context. Repeated measures analyses of variance of the means, medians, and errors showed no main effects of Subject Group at the 0.05 level, nor any two way interactions with other experimental factors. Data from the groups were thus pooled in further analyses.

The mean response time over all items (words, nonwords, and wrong context words) was 990ms, and the response accuracy was 76.4%. Subjects showed faster and more accurate mean responses for English words than French words (893ms and 26.2% versus 942ms and 26.7%). While neither of these differences was significant on the subject analysis (means: F(1,14)=1.21, p=0.290; errors: F(1,14)=0.03, p=0.859), an item analysis of response times on correct context words showed a significant advantage for English words (F(1,4)=4.54, p=0.033). The previous experiment showed a non-significant advantage of French words over English. This suggests that the lower frequency of English words in Experiment 1 may have masked a slight superiority for subjects in English.

Switch Costs for each Stimulus Type.

The switch cost was again derived by comparing performance on non-switch trials (those preceded by a trial in the same language context) with that on switch trials (those preceded by a trial in the other language context). Both subject and item analyses showed a significant performance cost was incurred in switching from responding according to one lexicon to responding according to the other. On average, subjects took 908ms to respond on non-switch trials and 1073ms to respond on switch trials, a time cost of 164ms (subject analysis, repeated measures anova: F(1,14)=224.49, p<0.001; item analysis, simple factorial anova: F(1,5)=88.73, p<0.001). Subjects made significantly more errors on switch trials, 24.7% against 22.5% on non-switch trials, a cost of 2.2% (subject analysis, F(1,14)=6.49, p=0.023).

Figure 10.3 shows the mean reaction times for each of the three stimulus types, on non-switch and switch trials. (As in the previous experiment, these means are taken from the item analysis, with data pooled over subjects. Henceforth all results will be from the item analysis unless otherwise stated).

These results demonstrate the same ordering of stimulus types found in Experiment 1. Words were responded to most quickly, followed by nonwords, followed by wrong context words. The differences between the stimulus types were significant (words vs nonwords, F(1,5)=38.55, p<0.001; nonwords vs wrong context words, F(1,5)=14.61, p<0.001). Once more, the speed-accuracy trade-off was apparent with words and nonwords; nonwords showed more accurate responses than words (F(1,3)=16.80, p<0.001) but slower response times. There was no interaction between stimulus type and switch cost (interaction of stimulus type and trial type: RTs: F(2,9)=0.52, p=0.594; Errors: F(1,3)=0.88, p=0.349). The switch cost did not appear to be sensitive to the lexical status of the stimulus.

Figure 10.3:  Item mean response times for lexical decisions on non-switch and switch trials, for each stimulus type.

Effects of orthography. 

In this section, we will look at words and nonwords separately. For words, presented in either the correct or incorrect context, the presence of language specific orthographic cues had only minor and non-significant effects on the base rates and switch costs. These results are shown in Figure 10.4. For words in the correct context, the non-switch response time was 15ms slower and the switch cost 69ms smaller in the presence of language specific orthographic cues (F(1,4)=1.19, p=0.277; F(1,6)=2.20, p=0.138 respectively). For words in the wrong language context, the non-switch response time was 106ms faster and the switch cost 34ms larger (F(1,4)=2.07, p=0.151; F(1,6)=0.58, p=0.477). There were no interactions with language context of presentation. Words with language specific orthography appeared to generate smaller switch costs, but these differences were not significant (p>0.3). These results are not clear, but imply that if anything, language specific orthographic cues served to reduce switch costs and allow subjects to reject words appearing in the wrong language context more effectively.

For nonwords, the results were quite different. On trials involving stimuli containing specific orthographic cues for a given language, the time cost to switch into that language was eliminated. Figure 10.5 shows this result. On non-switch trials, subjects responded most quickly to nonwords which possessed orthographic patterns illegal in the currently active language. Next fastest were nonwords with no language specific orthographic features. Slowest were nonwords with features specific to the active language. If these stimuli fell on a switch trial, features specific to the language into which the subject had to switch appeared to aid the subject, leading to an elimination of the RT switch cost (analysis of responses for language specific nonwords: interaction of legality in current language and switch cost, F(1,4)=10.08, p=0.002; switch cost for Specifics in English, 65ms, independent sample t-test, p=0.248; switch cost for Specifics in French, -42ms, p=0.484). For switches into English, nonwords with uniquely-French orthographic patterns caused a much larger switch cost of 294ms (p<0.001), as if the cue were a red herring. Uniquely-English characteristics did not appear to have the same strength of effect when switching into French (a switch cost of 81ms, p=0.076). 

Of importance here is that language specific orthographic features allowed the elimination of the switch cost for letter strings, but not for words with language-specific features. Words with specific characteristics still demonstrated significant switch costs. This suggests a differential influence of lexical and orthographic status in the determination of switch cost. 

Figure 10.4: Item mean response times for responses to words in the correct and incorrect language contexts, split by orthographic characteristics.

Figure 10.5: Mean response times for responses to nonwords, split by orthographic legality of the letter strings.



Effects of Frequency.

The experiment was not designed to evaluate the effect of word frequency on switch cost. In view of the switch cost asymmetry found in Experiment 1 between English/low frequency words and French/high frequency words, the current data were re-analysed. Words were classified as being low frequency if their Kucera-Francis rating fell below 50 occurrences per million, and high frequency if their rating fell above 100 occurrences per million. Pooled responses times for words and wrong context words were analysed using this distinction (the best division given the words available). Data from words with frequencies between these levels were excluded from the analysis (26.3% of the data points). However, this distinction was not strong enough to produce a significant main effect of frequency in the response times (F(1,5)=2.30, p=0.095). Nor did this frequency classification show a significant interaction with switch cost (F(1,10)=0.88, p=0.349). An examination of the influence of word frequency on switch cost must therefore be the subject of future experimentation.

Correlations of individual subject performance with time cost to switch into each language.

As in the previous experiment, the relation of each subject’s switch costs to their language dominance was examined. The results were as follows.

Correlation for Word Responses
Pearson’s correlation coefficient
p-value

English base rate with English switch cost
-0.117
0.667

French base rate with French switch cost
-0.293
0.271

(French base rate - English base rate) with (French switch cost - English switch cost)
-0.756
0.001

Correlation for Nonword Responses
Pearson’s correlation coefficient
p-value

English base rate with English switch cost
-0.450
0.080

French base rate with French switch cost
0.122
0.653

(French base rate - English base rate) with (French switch cost - English switch cost)
-0.868
<0.001

As before, base rate performance in a language did not significantly predict the time cost to switch into that language. Comparison of the differences in base rates and the differences in switch costs for each subject once more demonstrated large and highly significant correlations. Lastly, once more performance on nonwords was a better predictor of switch cost than performance on words.

Comparison of performance in Experiments 1 and 2.

If I was a subject in the bilingual language exclusive lexical decision task, one strategy I might adopt would be to reject any stimulus that appeared from the task-irrelevant language. This strategy would involve a certain configuration of the response mechanism to the two lexicons, whereby activity from the task-relevant lexicon would be linked to a Yes response, and that from the task-irrelevant lexicon would be linked to the No-response. This strategy is certainly feasible in Experiment 2. However, in Experiment 1, I would get my fingers burnt with homographs: activity from the task-irrelevant lexicon in this case should not lead to a No response. Thus I would be sensible to use the strategy in Experiment 2 but not in Experiment 1. This leads to a couple of predictions concerning possible differences between performance in Experiments 1 and 2, whereby we might test for the presence of this strategy in the second experiment. Since the strategy employs the presence of activity in the task-irrelevant lexicon to trigger the No response, a) words appearing in the wrong language context should be rejected more quickly in Experiment 2 than Experiment 1; and b) pseudowords generating activity in the task-irrelevant lexicon should trigger the correct negative response; these should also be rejected more quickly in Experiment 2 than in Experiment 1.

A comparison between the two experiments yielded no evidence for either of these effects (Wrong Context Singles, main effect of Experiment, F(1,4)=0.46, p=0.498; nonwords legal in both languages: F(1,4)=5.48, p=0.019, 59ms advantage for Experiment 1 over Experiment 2). There was a difference in the rejection times for non-specific nonwords between the two experiments, but the difference was in the opposite direction to the prediction. Since chronologically, Experiment 2 preceded Experiment 1, the advantage for Experiment 1 was most likely a practice effect.

Discussion.

The introduction of language-specific orthographic cues did not have any clear-cut effects for responses to words, either in the correct or incorrect language context. There were however two trends.

The first was that the presence of language-specific cues on a switch trial consistent with the language context of response, appeared to reduce the time cost to switch languages (p=0.138). This is consistent with the results found by Grainger and Beauvillain (1987), although apparently a much weaker effect. Grainger and Beauvillain found that in their language inclusive lexical decision task, language-specific orthographic cues eliminated the costs of mixed lists over pure language lists (where language switching was deemed to be necessary in mixed lists). There is a straightforward explanation for Grainger and Beauvillain’s result. In their experiment, only words in English and French contained language-specific orthographic cues. All nonwords were orthographically ambiguous between English and French (p. 307). Given that the subjects’ job was to respond Yes whenever an item was a word in either language, the presence of language-specific cues uniquely specified the correct response. For example, whenever a stimulus like DOUGH or EAU appeared, it had to be a word. Therefore orthography had the potential to be a more powerful cue in their experiment.

The second trend was that in the presence of language-specific orthographic characteristics, words appearing in the wrong language context were rejected more quickly (p=0.151). In Chapter 8, we examined Scarborough, Gerard, and Cortese’s (1984) finding that words presented in the wrong language context could be rejected as quickly as matched nonwords. There we suggested that subjects may have been rejecting both stimulus sets according to language-specific orthographic characteristics. The current data are consistent with the view that language-specific orthographic cues do allow accelerated rejection of wrong context words, and thus with our explanation of Scarborough et al’s result.

The main finding of Experiment 2 was that lexicality and orthography appeared to have different influences on the switch cost. Variation of orthography alone, i.e. when used with nonwords, allowed switch costs to be eliminated when language specific cues were introduced. In the presence of lexicality, variation of orthography merely allowed a non-significant reduction of the switch costs when language specific cues were introduced. It seems that if subjects can focus on orthographic cues alone, so long as the cues are consistent with the new language context, reconfiguration of the response mechanism can be achieved without any time cost on a switch trial.

The results also replicated two effects from Experiment 1. Firstly, while words presented in the wrong language context were generally rejected more slowly than nonwords, there was no increased switch cost. Secondly, once more performance on nonword trials allowed better prediction of switch costs from the subjects’ patterns of language dominance, than performance on word trials. Both of these findings are consistent with the notion that the orthographic rather than lexical characteristics of the input play the stronger role in determining the size of the switch cost.

General Discussion.

In this section we will address four questions:

1. Do these two experiments produce evidence supporting the notion that underlying competition / co-operation from the independent lexicons of the BIN model produces between language similarity effects?

2. Is the switch cost a useful investigative measure of control, or an artificial paradigm-specific phenomenon?

3. Does the bilingual possess an input switch? If not, where does the switch cost come from?

4. Can the results of the two language switching experiments be explained by the Bilingual Single Network model?

1. Do the results support the BIN model?

Between language similarity effects arise when a bilingual is operating in a single language, and thus must arise from underlying activation of the context-irrelevant lexicon. In the current experiment, we assume this situation to be equivalent to performance on non-switch trials. The results on non-switch trials showed that homographs generated slower response times than Singles, both for Non-cognate and Cognate homographs. This certainly shows that on the non-switch trial of a given language, the status of the string in the other language could not be ignored. However, in Chapter 4 we saw that for Cognate homographs, similarity effects can be facilitatory: Cognate homographs in the weaker of a bilingual’s two languages were responded to more quickly than comparable Singles in that language (Cristoffanini, Milech, and Kirsner, 1986). So for Cognate homographs, we have a similarity effect but not the right one (see 2. below). Other results are more encouraging. Non-cognate homographs showed slower responses on non-switch trials, consistent with other empirical findings (e.g. Klein and Doctor, 1992). As in the priming experiment in Chapter 8, Singles presented in the wrong language context took longer to reject than nonwords. Lastly, nonwords which were orthographically legal in the current language but illegal in the task-irrelevant language were rejected more quickly than those legal in both languages: once more, status in the task irrelevant language was important on non-switch trials. We can conclude that the task-irrelevant lexicon contributes to performance in the task-relevant language context, supporting the BIN model.

The use of the alternating runs paradigm allowed us to concentrate on the control of representations, via the measure of the switch cost. At this stage, we can be neutral as to whether control operates at the level of recognition or response (in 3. below we will be more committed). If both lexicons contribute to responses under normal circumstances, then during these control operations, we might expect an exaggeration of the similarity effects. The results here were unexpected: orthographic similarity factors mediated the switch cost more strongly than lexical similarity factors. Language-specific orthography - that is, activity coming from one lexicon alone - allowed a non-significant reduction of the switch cost for words, but elimination for nonwords.

In sum, between language similarity affected both performance within a language context and the operation of switching between language contexts. These experiments can thus be taken as support for the BIN model.

2. Is the switch cost an artificial paradigm-specific phenomenon?

The “bilingual exclusive language switching lexical decision task using the alternating runs paradigm” may be a very confusing task (as well as a title). Certainly, overall error rates were high (of the order of 25% of all trials). The subjects are trying to work out which language they must respond according to; sometimes they have to reject words and sometimes they have to accept words; the order of trials matters (switch, non-switch, switch, non-switch, and so on); the colour of the background matters (albeit redundantly); sometimes if a word form exists in the task-irrelevant language, it must be rejected; but if it is a homograph, it must be accepted. In view of these complexities, evidence that Cognate homographs were responded to more slowly than Singles, (when evidence from blocked lexical decision tasks suggests they should be responded to on a par, or more quickly), suggests the following: the task in the current experiments stresses a competition of cues. If all similarity effects are inhibitory, then they may be no more than a reflection of the subject’s confused search for clues (lexical, orthographic, presentation order, colour) as to how they should be responding on the current trial.

However, other experiments have produced similar results when using different designs. For example, on non-switch trials in Experiment 1, Non-cognate homographs were responded to significantly more slowly than matched singles. Yet the priming experiment in Chapter 8 showed the same result (62ms disadvantage in English, p=0.040; 81ms disadvantage in French, p=0.012). In that experiment, a different set of subjects performed 50 trials at a time in each language, yet showed the same similarity-based effect. Grainger and Beauvillain (1987, Experiment 1) had subjects perform lexical decisions on mixed language lists with no fixed switching regime, yet still found switch costs when subjects had to accept a word in a different language from the previous word. The pilot study mentioned at the beginning of this chapter used unpredictable switches of language, this time cued by colour of background. The pilot study showed switch costs only for items possessing orthographic legality (i.e. not for nonsense strings). The presence of switch costs indicates once more that the alternating runs paradigm was not solely responsible for the results in Experiments 1 and 2; moreover, it indicates that the switch cost is intimately linked to the linguistic nature of input strings.

More generally, the literature reviewed in Chapter 9 showed how researchers have used task switching to investigate control processes (e.g. Allport, Styles, Hsieh, 1994; Meiran, 1996; Monsell, 1996; Rogers and Monsell, 1995). The more relevant question, then, is not whether switch costs are artificial, but whether switch costs are the appropriate measure to tell us about the feasibility of the BIN model. What is it in the BIN model that actually generates the switch costs?

3. What are switch costs?

The presence of a cost for bilinguals to switch between recognising words in each language has been used to postulate certain forms of functional structure for the bilingual language system. For example, Grainger and Dijkstra (1992; see also Grainger, 1993) evaluated a variety of functional structures according to a set of experimental results (see Chapter 3 for a full account). They took the following evidence to be crucial in their decision: Grainger and Beauvillain (1987) found mixed language lists to take longer than pure language lists in the lexical decision task; in a semantic priming task, Grainger and Beauvillain (1988) had subjects perform lexical decisions on sequential pairs of items: across all conditions, mixed language pairs took longer than same language pairs; Grainger and O’Regan (1992) found this effect to be highly robust even after thousands of trials of practice on mixed language pairs. Lastly Grainger and Dijkstra themselves introduced evidence of cross-language orthographic neighbourhood effects. Of these four studies, the first three concern switch costs. In short, switch costs have been central to the investigation of bilingual lexical representation.

On the basis of the aforementioned results, Grainger and Dijkstra concluded that language must play an important role in recognition. In their (notional) bilingual interactive activation model, language context causes the base rate activations of the words of an entire language to be raised or lowered. If there is a switch of language context, any word in the new language will take longer to be recognised as its lexicon needs time to get ‘back up to speed’. This will results in the switch cost. In 1993, Grainger concluded that a bilingual version of the activation verification model might be more appropriate. In that model, each lexicon generates a list of candidates for a given input. Language context determines which candidate list is checked first. When there is a switch of language context, the wrong candidate list is searched first, hence the switch cost. Both of these accounts postulate a reduction in the efficiency of the recognition system for the context inappropriate language. In effect they are input switches, albeit only partial switches (i.e. where the inappropriate language can be turned down but never fully ignored).

So far then, we see the importance of the switch cost and the inference that it reflects some kind of input switch. On the other hand, there is plenty of evidence arguing against the existence of an input switch. For example, in the bilingual Stroop task, subjects cannot ignore the meaning of the words in one language when naming the colour of the ink in the other language (Preston and Lambert, 1969). In the bilingual flanker task, subjects cannot ignore different language words surrounding a target word when making a semantic classification (Guttentag, Haith, Goodman, and Hauch, 1984). Most relevantly, subjects show no switch cost when performing semantic categorisations in two languages (Mason, 1994). On these grounds, it is unlikely the switch cost comes from the operation of an input switch which turns down recognition in an unwanted language. In which case, where does it come from?

Here, we will suggest here that the switch cost is a function of response reconfiguration, and that the results of Experiments 1 and 2 are consistent with the preliminary model outlined in Chapter 9 (see Figure 9.1). The story runs as follows. To derive responses from the bilingual word recognition system in the lexical decision task, its activity must be connected to a response mechanism. The connections must be weighted, so that the mechanism produces the correct response according to the current language context. On a switch trial, the response weightings must be reconfigured. Reconfiguration takes a single trial, and then is fixed for further trials in that language context.

Once the reconfiguration process starts, it is driven by uncertainty. This is an uncertainty as to how to configure the responses. Endogenous information (about the colour of the background, about the switching regime) contributes and will eventually resolve the reconfiguration. However, lexical, and to a greater extent, orthographic information provided by the stimulus contributes to resolving the uncertainty. If the stimulus is a word, this adds enough confusion to guarantee a switch cost (greater if it is a word with the same meaning in both languages). If the stimulus is not a word, then orthographic information may eliminate the uncertainty if the orthographic cue is consistent with the new language context. Stimulus information from each language competes to resolve the reconfiguration process. The efficiency of any information in serving to reduce the uncertainty will depend on “how quickly it goes by” (a bit like trying to recognise the colour of a car on a motorway: easier if it is going more slowly). Thus high frequency words and words of the dominant language are less efficient at resolving the uncertainty engendered on the switch trial, and lead to greater switch costs.

This account sews together many of the empirical findings from the preceding experiments, but much of it is merely a redescription of the data. It does however make two important points:

1. The switch cost does not reflect the action of an input switch but the operation of response reconfiguration. Activity in the task-irrelevant lexicon will always contribute fully to processing, consistent with the BIN model.

2. Lexical and orthographic information operate differently on the reconfiguration process - this is consistent with the Seidenberg and McClelland framework where these sources of information originate from different networks.

Let us apply the first of these conclusions to a ‘well-known’ experience of bilinguals: they suddenly come across a word in their other language, and are temporally unable to ‘recognise’ it (see quote at beginning of Chapter 3). If there is no input switch, what is happening here? This experience is most likely a post-access meaning integration effect. The bilingual has recognised the word, but cannot fit its meaning into their ongoing understanding of the discourse. In principle, this would be little different to the monolingual experience of performing a double take on a word appearing out of zebra.

4. Can the switching results be explained by the BSN model?

We have explored control processes in an attempt to justify the feasibility of the BIN model, but of course, we must also ask whether they undermine the feasibility of the BSN model. The main design principle of the BSN is that it has a single representational space - as a result, it cannot show behaviour which can only arise from the parallel access of two systems. The question is, do we have any such evidence? We will save a deeper consideration of this issue until the next chapter. Here let us consider what a BSN account would comprise. The BSN model is best thought of as a compound cue retrieval system. To retrieve a given word, one inputs both its orthographic / phonological form, as well as information about its language context. Together, these allow computation of the meaning. Issues of control then revolve around the specification of the language context information. A switch cost would arise from the requirement to reset this language context information, and would be determined by a variety of sources of information (lexical, orthographic, colour, switch regime). At this point, potential control process are insufficiently well specified to be able to rule out certain behaviours from the BSN model. For the moment, there is not a useful answer to the above question.

Conclusion.

This chapter found evidence consistent with the generation of between language similarity effects via simultaneously active, independent lexicons. Had switch costs been independent of between language similarity, this would have significantly weakened the plausibility of the Bilingual Independent Networks model. However, the evidence cannot at the moment rule out the Bilingual Single Network model.

Chapter 11.

An evaluation: separate or separable representations?

Introduction.

To establish whether the bilingual has separate representations, we need to determine clear criteria for assigning this label. We will see that the debate between models with shared and separate representational resources is a familiar one where distributed connectionist models have been applied to psycholinguistics. We will review the possible criteria to settle the point, and then focus on one of these criterion, acquisition. We will explore the principal difficulty for the BSN model, that of second language acquisition, and offer a potential solution. In doing so, we will speculate that the BSN and BIN models may converge using a certain sort of (neurally inspired) algorithm, and that the single route / dual route debate may be an unnecessary one.

Distributed cognition.

The ultimate extension of the concept of distributed representation is that a single huge network could represent all of the computations required for cognition, distributed over a homogenous set of processing units. However, in practice such a network would be untrainable. Moreover, the functional specialisation of areas of the brain does not square with such a view. The next step is to conceive of a set of sub-networks, wired together into a larger structure. This position raises the question of when we should characterise sets of computations as falling into the distributed representations of a single network, and when we should see them as falling into separate sub-networks. Converging evidence from psychological experimentation, from cognitive modelling, and from neuroscience (including brain imaging studies) should eventually help us to resolve such questions. In this project, we have taken a specific case study, and examined the perspective generated by the first two of these disciplines.

Finding evidence for separate representations.

How do we tell if there are separate representations? There are at least four types of evidence. The first is functional independence. Evidence is collected concerning whether operations in one task affect operations in the other task. The second is control. Evidence is gathered about the way a subject switches between performing computations of each type. The third is dissociation. Evidence is collected concerning whether damage to the system can selectively eliminate one or other set of computations. The last is acquisition. Evidence is collected about the way the two tasks are acquired, either together or separately.

In terms of connectionist modelling, there is a potential problem. Let us say that I train a single homogenous network on two tasks. Let us then say that performance of those tasks in my network can be (a) independently acquired, (b) independently manipulated, and (c) independently dissociated from within the same set of distributed representations. If this were the case, logically I should conclude that this model had functionally separate representations of each task. The fact that I have used a single network is irrelevant to the resultant functional architecture of this system. It behaves as if it has separate representations within it. At most, my simulation has told me a possible way of implementing the functional structure.

It turns out that single networks do not behave in this fashion. Implementation of two tasks in a single network has specific behavioural implications, and implications about how the functional routes may be acquired. There will be interference between the tasks when their computations are similar. Thus it becomes possible to search for a certain pattern of data in human behavioural evidence, and from this evidence, draw conclusions about the representations underlying the behaviour. This is what we have attempted to do in our case study.

Case study: Bilingual lexical representation.

The bilingual must recognise the words in two languages. A model of monolingual performance suggests that a system employing a single set of distributed representations can account for the recognition of the words in a single language (Plaut et al, 1996). In Chapter 6 we put forward an account of how this framework could explain the results generated by the principal empirical tool in this area, the lexical decision task. For the bilingual case, we considered three possible extensions to the monolingual framework: the No Change (NC) model, the Bilingual Single Network (BSN) model, and the Bilingual Independent Networks (BIN) model.

The No Change model doesn’t get very far in the face of evidence that the language membership of words can have a material effect on recognition behaviour: in generating switch costs, in the frequency response of non-cognate homographs, and in the presence of inhibitory cross-language neighbourhood effects. The BSN model proposes that the bilingual processing system tags words according to their language membership. Otherwise, the structure of the system is unchanged, and a single set of distributed representations is employed. The BIN model on the other hand, takes the presence of a second language as the cue for a new structure. There are now separate sets of representations to store the lexical information for each language. To evaluate the claims of the respective models, we then turn to the behavioural evidence.

Let us review some of the principal findings put forward in the literature, which might establish the independence of the bilingual’s lexical representations. Not all of them are going to turn out to be useful.

1. Using a long lag repetition priming paradigm, there is no priming between translation equivalents in two languages. Thus for English and French, DOG primes recognition of a later presentation of DOG, but not of CHIEN (see Chapter 3).

2. Non-cognate homographs are recognised in a lexical decision task according to the frequency of occurrence of this word form within its language. Thus FIN is recognised slowly in an English context since it is a low frequency word, but quickly in a French context since it is a high frequency word (see Chapter 3).

3. In Chapter 8, we saw that in a long lag repetition priming paradigm, there was no priming between non-cognate homographs presented in different language contexts: FIN presented in English doesn’t help later presentation of FIN in French.

4. Although the evidence is not clear-cut, neuropsychological studies certainly show that it is possible to suffer differential impairment to one or other language after brain damage (see Chapter 3).

In fact, none of these turn out to be useful, because all of these effects find parallels within monolingual word recognition. In monolingual word recognition, they are simply taken as indicative of sub-divisions within a single system:

1. There is no long lag repetition priming between orthographically dissimilar synonyms. Thus DOG doesn’t prime recognition of HOUND over long lags.

2. Words can sometimes be ambiguous as to whether they are verbs or nouns. For instance SHIP, LAND, and BOX are usually used as nouns but are occasionally used as verbs; LOOK, CAN, and WANT are usually used as verbs but are occasionally used as nouns. In a perceptual recognition task, when subjects were biased to expect a single grammatical class, Roydes and Osgood (1972) found that subjects recognised a word according to its frequency within the grammatical class. Thus they might recognise BOX quickly if expecting a noun, and slowly if expecting a verb.

3. Individual words may also have more than one meaning in the same language. Thus BANK can be the edge of a river or a place to keep money. Masson and Freedman (1990) biased subjects to recognise a word according to one meaning on its first presentation (e.g. RIVER preceded BANK), and the other meaning on its second presentation (MONEY preceded BANK). In a lexical decision task, they found no repetition priming between presentations of the same word form with different biasing semantic context. When repeated with the same biasing context, however, priming was found. Thus there was no priming between different meanings of the same ambiguous word.

4. Dissociations have been found between impairments to the recognition of verbs and nouns within the same language. Moreover this extends to ambiguous words with a verb and noun meaning. Thus Caramazza and Hillis (1991) report how patient HW could read the word “strike” in The workers went on strike, but not in You strike a match to light a candle.
However, there is additional evidence that would seem to establish the uniqueness of the bilingual response.

5. When bilinguals are reading or performing lexical decisions on lists of words, they reliably take longer on mixed language word lists than single language word lists (see Chapter 3). One could interpret this as a lack of familiarity with arbitrary changes in language. However Grainger and O’Regan (1992) found that the additional time required to recognise a word when it was preceded by a different language rather than same language word was highly resistant to practice.

6. Grainger and Dijkstra (1992) categorised words depending on whether they resembled more words in their own language (called patriots) or the other language (called traitors). They found that in a single language lexical decision task, patriots were recognised more quickly than traitors. However, in the No Change model, there is no difference between patriots and traitors. It is only language membership information which distinguishes them.

Taken together, points 1-6 are used to construct a case for independent lexical representations. Thus Smith (1991, p. 234) comments:

“A large body of research suggests that there is independent representation of the two languages of a bilingual at the lexical level, with common representation of a word and its translation at the semantic level.”

The BSN versus the BIN model. 

In the course of this thesis, we have compared two hypotheses for the representation of the bilingual’s lexical knowledge, based on a distributed framework. If the computations necessary to recognise two sets of words are stored in the same network, we would expect similarity-based interference between those sets of knowledge. In Chapter 4 we reviewed a large body of research pointing to the presence of such effects in the language processing of bilinguals. At first blush, this points to the presence of a single distributed system. However, provided the BIN model can appeal to some process of control by which the activity of its two sub-networks is  combined, it may also offer an account of these between language similarity effects.

In Chapters 7-10 we evaluated the respective attempts of the two models to account for this key set of data.

For the Single Network model, we constructed a connectionist network which learned to map between the orthographic and semantic codes for two artificial languages. The model employed a single set of distributed representations for both sets of mappings, and distinguished the languages by additional information at input and output. This network demonstrated evidence consistent with independent representations for each language: non-cognate homographs were responded to according to within language frequency; non-cognate translation equivalents showed little cross-language repetition priming. However the model also demonstrated a number of between language similarity effects: non-cognate homographs were disadvantaged compared to frequency matched cognate homographs; low frequency cognate homographs in a weaker language were facilitated compared to frequency matched words; words employing language specific orthography were recognised more quickly than those with non-specific orthography. The model disagreed with the empirical literature with regard to cross-language priming patterns for non-cognate homographs and cognate homographs. In Chapter 8, the first of these points was re-examined in an empirical study. The results of that study supported the model.

In sum, the model shows that without additional structural assumptions about the bilingual lexical system, a range of empirical effects can nevertheless be accounted for, including the key data of similarity effects. While the representations for the two languages are not separate, they are nevertheless separable under certain conditions.

In the BIN model, we took for granted that separate sub-networks could account for evidence of language independence. The issue for this model was to account for evidence of the lack of independence, i.e. the similarity effects. We proposed that processes co-ordinating the activity of the separate lexicons could generate such effects. Specifically, when responding according to the output of one network, the bilingual cannot ignore activity arriving from the context-irrelevant network. We chose to investigate the BIN model by examining how lexical representations could be controlled. We introduced two empirical studies which examined the ability of bilinguals to control responses according to each of their lexicons. Specifically we looked at the performance costs they incurred when switching between responding according to each language. The results showed that these processes of control were indeed sensitive to between language similarity patterns. Moreover, the switch costs did not reflect the operation of an input switch, but of a response reconfiguration process. The results were thus consistent with a view of the bilingual lexicon as two independent sets of representations which are continuously active, and which compete to influence responses. In this model, the representations are separate but not silenceable. However, while the results of these experiments supported the BIN model, they were unable to rule out the BSN model.

In short, both of the models are able to provide sensible accounts of the empirical combination of independence with additional between language similarity effects.

Why are these models hard to tell apart?

It might seem strange that, as yet, we cannot distinguish between these competing accounts. However, this situation is not unprecedented in the history of connectionist modelling. Indeed, two of the more significant debates within psycholinguistics revolve around precisely this question. The problem is more usually known as the debate between dual route and single route accounts.

These two debates concern the formation of the past tense in English and the naming of words in English. Broadly, two route accounts suggest that one route is responsible for regular (or rule-bound) past tense formations / pronunciations, and another responsible for irregular (or exception) past tense formations / pronunciations.
 Single route accounts suggest that a single set of distributed representations is responsible for both regular and irregular past tense formations / pronunciations. A great deal of empirical work and computational modelling work has been focused on resolving the two route / one route debate. Both individual debates still continue after more than a decade. This is an indication that it is not easy to find decisive evidence to distinguish between the two approaches. The reason is that if both models can account for normal performance on both regulars and irregulars (and in the main, they can), then one must appeal to some other kind of evidence to distinguish between them. Given the precedent of these debates, we may use them to try and work out the best way to distinguish between single and dual route accounts. What is the empirical hallmark of storing two sets of computations in a single set of distributed representations?

Distinguishing separate and separable representations. 

In the following sections we will review a number of ways that have been used to try and distinguish one and two route approaches. They are as follows.

a) consistency effects

b) dissociations

c) parallel access

d) acquisition.

a) Consistency effects.

In both the past tense and naming debates, consistency effects have been put forward as evidence for a single route account. Consistency effects are essentially between route similarity effects. We can illustrate this with an example. In the dual route naming model, regular pronunciations for words such as AID, MAID, PAID, and BRAID can be generated by the regular route (using Grapheme-Phoneme Correspondence rules). However, a word like SAID has an exception pronunciation and must be handled by the exception route. The point to note here is that the -AID word body has an inconsistent pronunciation between the routes. In contrast, the word body -AKE is always pronounced in the same fashion, as in BAKE, TAKE, WAKE, SHAKE, MAKE, HAKE, SAKE, FAKE, CAKE, SNAKE, DRAKE, LAKE, and so on. No items will exist in the exception route which have a different pronunciation for this word body.

Word bodies, then, can have consistent or inconsistent pronunciations between the two routes. Now let us take a computation that should employ just one of the routes. For example, in the dual route account, the pronunciation of nonwords is assumed to take place in the regular route using the GPC rules (Coltheart et al, 1993). So were we to pronounce two nonwords, such as ZAID and ZAKE, naming latencies should depend only on the operation of the regular route. However, it has been demonstrated that strings like ZAID, with inconsistent word bodies, will be named more slowly than strings like ZAKE, with consistent word bodies (Glushko, 1979). The presence of a word like SAID in the supposedly separate exception route, has influenced processing in the regular route. Similar results have also been found in latencies for forming the past tense in English (Seidenberg and Bruck, 1990, cited in Seidenberg, 1992). Seidenberg (1992) has suggested that such between route similarity effects are evidence of interference effects within a single set of distributed representations, and thus favour single route models.

In bilingual word recognition, there is an analogue to consistency effects. Bilinguals respond more quickly to words with language specific orthography than to words with non-specific orthography, and more quickly to patriots than traitors (Beauvillain, 1992; Grainger and Dijkstra, 1992). Performance in one route is influenced by the status of the string in the other route. Following Seidenberg, we could then conclude that the Single Network model is the most appropriate characterisation of bilingual lexical processing.

However, dual route accounts have attempted to explain consistency effects, on the basis that they reflect some co-ordination or interaction of the two independent routes. Thus Coltheart et al comment:

“Various studies have shown that inconsistency slows naming latency. This is often cited as evidence against dual-route models, especially the nonword result: If all nonwords are read aloud solely by applying GPC rules, how could the word said possibly exert any influence on the processing of the nonword zaid... [One possibility is that the regular and irregular routes compete.] Because competition increases naming latency, this is a way in which a pure dual-route model can explain consistency effects on nonword (and word) naming latency... it does seem highly likely that there will exist a set of parameters [for the implemented dual route model] that will yield quantitatively what, at a qualitative level, appear to be effects that the model should generate.” (Coltheart, Curtis, Atkins, and Haller, 1993, p. 605).

A similar account is put forward in the past tense debate, to explain between route interference effects during acquisition (otherwise known as over-regularisation errors). In the dual route story, these are the result of the faulty co-ordination, in which the irregular route fails to ‘block’ the regular route at some stage of development (see e.g. Pinker, 1994).

Apart from Coltheart et al’s self-declared data fitting exercise, few attempts have been made at exploring the control processes that are supposed to glue together the responses of the dual routes, and whose precise implementation leads to the emergence of between route similarity effects. In this project, we have explicitly set out to explore the control processes operating over the bilingual’s two lexicons. At least in this domain, empirical results did confirm the sensitivity of control processes to between language similarity patterns.

b) Dissociations.

Attempts have been made in both the past tense and naming debates to use neuropsychological evidence of double dissociations between the putative routes as evidence for separate representations (e.g. Pinker, 1991; Coltheart et al, 1993). In the bilingual case, there is some evidence of differential impairment of languages, although this generally appears to be associated with levels of proficiency and histories of acquisition. We will not spend time on this question, other than to note that Plaut (1995b) has found double dissociations within a single network model. The network was trained to generate the meanings of written words. When lesioned, it showed double dissociations between patterns corresponding to concrete and abstract words, simulating evidence found in patient studies. Here at least is an existence proof that double dissociations need not imply architecturally separate representations.

c) Parallel access.

To account for between-route similarity effects, the dual route model employs the notion of parallel access of both routes. It is important to note that in the single network model, such parallel access is not possible: there is only a single representational system, which may take on different forms in different contexts (e.g. L1 vs L2, regular vs irregular). Evidence which demonstrates parallel access must have occurred will be evidence for the dual route model.

Several bilingual studies have been put forward to demonstrate parallel access using the Stroop task. Subjects are required to respond using one language (say L1), in naming the colour of the ink in which a word stimulus are printed, or naming a picture. Words in L2 are then included in the stimuli, either as the colour words, or inserted in the pictures. Results show that subjects cannot stop themselves from semantically processing words in the task irrelevant language (Dyer, 1971; Ehri and Ryan, 1980; Preston and Lambert, 1969). However, these experiments are not entirely satisfactory, since the tasks merely require subjects to set a production switch to respond according to L1, and then name colours or pictures. From these experiments, one couldn’t necessarily show that both L1 and L2 comprehension systems were active at the same time.

The bilingual flanker experiment provides stronger evidence, but it is still problematic. Guttentag et al (1984) required subjects to perform a semantic categorisation task on words. However, targets were flanked by other words, either in the same or different semantic category. When the words were in a different semantic category, responses were slowed. When the flankers were in the bilingual’s other language, the interference remained the same. This would appear to show that comprehension runs in parallel in both languages. The problem here is that no monolingual connectionist model yet exists that provides an account of the simultaneous recognition of more than one word. It is therefore unclear how we could dismiss a bilingual model, single network or otherwise.

In Chapter 8, we attempted to test for parallel access in a repetition priming study. Words were presented in the wrong language context, and then repeated in the correct language context. The pattern of repetition priming was not the same as when the word was repeated within its own language context. This result may reflect limitations of the repetition priming paradigm in the lexical decision task for evaluating access. Nevertheless, in an initial test, access to a lexicon did not produce the same effect in both language contexts. This argues against the idea that its activity is the same in each context.

In sum, tests for parallel access should allow us to distinguish single and dual route models. Thus far, they have not done so decisively.

d) Acquisition.

The question of acquisition will take up much of the rest of this chapter. As we saw in Chapter 4, with acquisition, the dual route approach encounters a logical problem and the single route approach encounters a practical problem.

First the logical problem. If we assume that both sets of computations are acquired simultaneously during language acquisition (in this case, between phonology and semantics), how does the overall system know to use separate representational resources for each set? How does the overall system know which individual computations are associated with each set, and thus should be represented over one or other resource? In the naming and past tense debates, there has traditionally been an appeal to innate constraints (Pinker, 1994). The rule mechanism and exception mechanism have evolved in the expectation of acquiring something like language, which has rules and exceptions. In the case of the simultaneous acquisition of two languages, a similar account is unlikely - most acquisition is monolingual. In Chapter 3 we saw that the evidence from studies of simultaneous bilingual acquisition showed a gradual reduction in mixing between the languages during production. However, the evidence was best interpreted as reflecting the development of sociolinguistic skills about when to use each language, rather than the gradual separation of representational resources (Genesee, 1989; Lanza, 1992; Vihman, 1985). For the BIN model, the problem remains unsolved: where do the separate representations come from? We will offer a possible answer to this question shortly.

Next the practical problem. For the single route account, sequential acquisition of each set of computations risks disruption to the single representational resource. This problem has no analogue in the naming and past tense debates, since regular and irregular computations are always intermixed during acquisition. The BIN model has no problem here: when a new language comes along, a new representational resource is put aside for it. For the BSN model, however, the new language must be integrated into the same set of connection weights and the same distributed representations. Training of small networks using conventional learning algorithms can incur an effect called Catastrophic Interference under these conditions. In terms of bilingualism, L2 knowledge might overwrite L1 knowledge. Yet as we saw in Chapter 3, second language acquisition can produce a functional structure little different from simultaneous acquisition. If the BSN model cannot offer an account for second language acquisition, then it is very much weakened.

An evaluation.

Our four criteria produce the following results. Both BSN and BIN models can produce consistency effects; both models can probably simulate dissociation evidence; evidence of parallel access that would undermine the BSN model has yet to emerge; acquisition holds problems for both models. Again, this is not very decisive.

At this stage, we will come off the fence and express a preference for the Single Network account. Our basis for viewing the Single Network account as superior is much the same as that put forward for other single route connectionist models. The BSN model is parsimonious, and accounts for a range of disparate data (i.e. both similarity effects and evidence for independence). There is no requirement in this model that we assume any special structures for the bilingual language system. The Single Network model is consistent with the notion of a distributed lexicon, where many constraints determine the representations developed by the system. In the bilingual case, language membership serves as an additional constraint in performing the computations necessary in word recognition. In principle, we could think of it as similar to the way that semantic context or grammatical class constrains the recognition of ambiguous words in a single language context. This explains why we should find so many parallels between monolingual and bilingual word recognition, shown at the beginning of this chapter.

In declaring our hand, this obliges us to explain how the BSN model can achieve second language acquisition without incurring Catastrophic Interference. In the rest of this chapter, this is what we will attempt to do. There will be a surprise result. Our story will turn up a possible way in which the Single and Independent Networks models might be reconciled.

Catastrophic Interference.

Our consideration of the question of catastrophic interference (CI) will comprise several parts. Firstly we will explain the nature of the problem. Secondly we will explore what patterns of interference are found between languages during second language acquisition. Thirdly we will look for precedents of CI in bilingual connectionist models. Fourthly we will explore possible ways around CI. Finally we will outline a possible account of second language acquisition in the BSN model. Before we start, let us note that CI is a problem for all cognitive models employing distributed networks. For instance, in monolingual word recognition models, the acquisition of new vocabulary risks CI. Either strong assumptions about circumstances of acquisition are required, or assumptions concerning mechanisms to eliminate interference effects are required, or interference effects are taken to be an empirical prediction. (This is the kind of thing that is normally swept under the carpet). However, second language acquisition is the ultimate case of sequential learning. CI is a problem we must tackle head on.

1. The nature of the problem.

A variety of terms, the problem of sequential learning, catastrophic interference and catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990), describe a phenomenon that is an inevitable consequence of distributing the knowledge to perform a set of computations across a single group of connection weights. That is, the effect is an inherent feature of distributed representations per se. It is the down side of superposing the representations for all mappings across the same weights. On the up side, superposition gives rise to features such as generalisation beyond the training set, pattern completion, content addressable memory, and graceful degradation, all of which make connectionist networks attractive models of cognitive processing.

If the weights of a network are set up to perform one set of computations, and the network is later trained on a second set of computations, the second set will want to use all the connection weights to achieve a low error on its own mappings. The alteration to the network weights caused by training on the second set of mappings has the potential to wipe the network’s knowledge of the first set. In the current context, this implies that if we have a network that recognises L1 words, and we train it to recognise L2 words, we risk producing a network which has forgotten about L1.

2. Patterns of Interference in Second Language Acquisition.

In Ellis’s (1994) book on second language acquisition, there are two references to interference of the acquired L2 on performance in L1. In comparison, a whole chapter is dedicated to the way in which the language learner’s existing linguistic knowledge influences the course of L2 development. In the first reference, a distinction is drawn with regard to bilingualism (rather than the process of second language acquisition) between borrowing transfer, where L2 influences L1, and substratum transfer, where L1 influences L2. Borrowing transfer does seem to imply sequential interference of new knowledge on old knowledge. However, there is no expansion on the nature of borrowing transfer in second language acquisition. Indeed Ellis comments that “current definitions of the term ‘transfer’ allow for both sociolinguistic and psycholinguistic L1 effects [on L2]” (p. 310). Transfer is not normally conceived of as travelling from L2 to L1. The second reference is to social factors in second language acquisition. In subtractive bilingualism “learners replace their L1 with their L2, failing to develop full competence in their mother tongue or, in some cases, actually losing competence that has already been acquired. This arises when learners have a low estimation of their own ethnic identity and wish to assimilate into the target-language culture.” (Ellis, 1994, p. 208). The fact that in an 800 page book, only two references are made to the notion of L2 interference on L1 suggests that it is not a broad characteristic of second language acquisition.

There are circumstances under which something like catastrophic interference might occur in second language acquisition. One of these is in situations of resource limitation (Peer, 1994). This evidence relates to children aged between 4 and 6 who underwent a complete change in linguistic environment, and importantly, who later showed signs of developmental dyslexia. These children exhibited a complete cessation of language use in L1. Apparently L1 had been “replaced” by L2. However, no rigorous analysis of these data was available. Moreover, methodologically one would require more than a cessation of L1 use to demonstrate that L1 knowledge had been lost. There might be many reasons why a child would be reluctant to use a ‘former’ language. Careful psycholinguistic testing would be necessary to establish this type of result, such as the demonstration of a lack of cross-language effects in the bilingual Stroop task. No such evidence has yet been presented. Secondly, extended immersion in a foreign culture may allow an initial L1 to degrade (Seliger, 1985). Lastly, there are anecdotal reports that intensive courses in second language learning (such as those provided at professional language schools) may cause disruption to smooth performance in L1 for a short time afterwards; and that when further languages are learned, there may be interference between the non-native languages (i.e. between L2, L3, L4, and so on). All of these examples suggest that a more careful examination of L2 interference on existing L1 knowledge may be warranted. With regard to the BSN model, it is necessary to establish the target that it must meet in avoiding interference between a first and second language. Nevertheless, it does seem that any such effects will be minor.

A clearer case of interference can be found when an L2 is no longer used, and language knowledge appears to be lost. This is known as language ‘attrition’ (see Weltens and Grendel, 1993, for a review). When a second language is acquired, this knowledge does not remain permanently in pristine condition, ready for use. The language knowledge fades over time. However, second language attrition does not show the characteristics of normal ‘forgetting’. Under the classical Ebbinghaus view of long term memory (1885), forgetting is a function of the amount of initial knowledge. A certain percentage of knowledge is lost over time: if you know more to begin with, then you forget more, so that levels of knowledge converge. However, Bahrick (1984) examined the retention of school-learned Spanish over periods of up to 50 years of disuse, employing a range of tasks. Subjects with different initial levels of proficiency showed parallel rather than converging forgetting functions. That is, subjects lost a fixed amount of knowledge over a given period of time, irrespective of their level of proficiency when ceasing to use the language.

The loss of a disused L2 is gradual. It becomes harder both to access the meanings for words, and to generate the appropriate form in production. But a within subject comparison of vocabulary test (Weltens, 1989) and lexical decision task (Verkaik and van der Wijst, 1986, cited in Weltens and Grendel, 1993) on Dutch subjects at 0, 2, and 4 years after ceasing to learn French, revealed that there was a slowing of recognition time prior to a loss of vocabulary. Good performance in the vocabulary test after several years of disuse masked slowing recognition times. In terms of a logogen or interactive activation model, one might conceive of the base rates of the respective L2 word units gently declining over time, until they no longer have the potential to exceed threshold. This view assumes that we retain our knowledge of these lexical items, but we lose our ability to access this knowledge. The fact that the knowledge can be easily recovered by subsequent use is offered in support of this view. We will later see that distributed models offer a different interpretation of this process.

There are other interesting characteristics of the attrition process. Firstly, attrition does not act at an equal rate on all parts of L2. Trapman (1991) found evidence showing that syntactic aspects of lexical items were lost while the lexical items themselves were unaffected. Verkaik and van der Wijst (1986) found that attrition was greater for low frequency non-cognates in the second language - that is, words which have a different form to their translation equivalents in L1. Grendel (1993, cited in Weltens and Grendel, 1993) used the ‘orthographic lexical decision task’ to examine attrition rates for Dutch subjects after 2 and 4 years of disused, school-learnt French. This task examined how quickly subjects rejected nonwords which contained legal consonant clusters in French, against those that contained illegal consonant clusters. A loss of L2 should be reflected in a convergence of the rejection times for these items, as L2 legality ceases to be relevant. However, this study showed no attrition of orthographic knowledge at all. The size of the effect, which was larger for subjects with a higher proficiency in French when disuse commenced, remained virtually the same across a four year period of disuse. Grendel also examined the size of short interval semantic priming effects in L2. Again, there was no apparent attrition of the semantic priming effect over a four year period.

To sum up, with regard to the lexicon, the attrition results show that there are similarity-based effects in the patterns of attrition that L2 suffers. For those items dissimilar to L1, attrition is greater. Orthographic knowledge appears unaffected, as does semantic priming. Overall, there is little overt evidence of catastrophic interference effects as an L2 is acquired. The BSN model would need to put forward an account of second language acquisition that by and large avoided such interference effects. On the other hand, the similarity effects in L2 attrition would be consistent with the fact that L1 is sharing the same representational resources. We will expand on this point later.

3. Connectionist models of second language acquisition.

There have not been a great number of connectionist models of bilingual language processing thus far. Broeder and Plunkett (1994) reviewed early attempts to apply connectionist modelling techniques to second language acquisition (e.g. the acquisition of pronouns in a second language: Blackwell and Broeder, 1992; the transfer of word order properties from L1 to L2: Gasser, 1990; the acquisition of gender assignment in French: Sokolik and Smith, 1992). Interestingly all of these approaches chose to use a single network to represent information from both languages. Perhaps the evidence of transfer effects from L1 to L2 makes the single network approach the more obvious one from the perspective of modelling second language acquisition. In any event, in all of these simulations, catastrophic interference was either reported, or clearly occurred but was not commented on. The emphasis of these studies was to investigate transfer effects on L2 from a network already trained on L1, yet the effects of L2 on L1 were clearly just as salient in the behaviour of the models.

Thomas and Plunkett (1995) investigated the phenomenon of catastrophic interference in the context of a network model of bilingual lexical representation. This model comprised a simple 3-layer feedforward network, which was trained to autoassociate words in two artificial languages. When trained sequentially, L2 caused significant disruption to prior performance on L1. However, Thomas and Plunkett showed that catastrophic interference could be eliminated by increasing the number of units coding the language membership of lexical items. The mappings for the second language could in principle be acquired without disruption to L1. It should be noted however, that satisfactory elimination required twice as many language coding units as word input units (60 against 30; for comparison, the model in Chapter 7 used 8, and at most 16 units to code language membership against 30 orthographic units). Furthermore, this method of eliminating CI might also eliminate the between language similarity effects that made the single network an attractive model of the lexicon in the first place.

4. Methods of avoiding Catastrophic Interference.

In this section, we will introduce and evaluate four possible ways that distributed networks can avoid catastrophic interference. They are as follows:

a) Use orthogonal representations.

b) Make sure L1 and L2 knowledge is consistent.

c) Continue training the network on L1 as L2 is introduced.

d) Use different hidden units for each language.

a) Use orthogonal representations.

Catastrophic interference (CI) occurred in the Thomas and Plunkett model because L1 and L2 were fighting over the same set of weights. L1 sets them one way, L2 sets them another way. One way to avoid CI would be to use different weights to represent L1 knowledge and L2 knowledge within the same network. Their representations would become “orthogonal”, or entirely dissimilar. 

The arbitrary mapping between phonology / orthography and semantics requires a network with hidden units. For the orthogonality solution to be relevant in a 3-layer network, we would need to make the single bank of hidden units develop non-overlapping representations for L1 and L2. Perhaps during training, we could open up the network, and somehow encourage the network to tease apart the representations it was forming for each language. In practice, this is achieved by altering the training algorithm to include a phase where the overlap between L1 and L2 hidden unit representations is reduced. This technique is called node sharpening (French, 1991, 1992; Murre, 1992). Alternatively, the network might be explicitly set the task of developing orthogonal internal representations (Sharkey and Sharkey, 1994). Or the network architecture might be constrained to develop non-overlapping hidden unit representations (Krushke, 1992, 1993).

Alternatively we could encourage the standard 3-layer backpropagation network to develop orthogonal internal representations by the nature of the mappings it has to perform. The inclusion of language context units suggested by Thomas and Plunkett (1995) is such a solution. Internal representations inherit the orthogonality coded into the input and output vectors, and hence the hidden unit activations for L1 and L2 are orthogonal. This solution has the advantage of preserving generalisation within languages, but reducing generalisation between languages.

The difficulty of any solution that seeks to orthogonalise the representations of L1 and L2 is in preventing L1 from spreading itself thinly across all the system resources prior to the learning of L2. If this occurs, L1 and L2 will fight over weights whatever their number. Backpropagation tends to produce very distributed representations, where L1 will spread to occupy all available resources. Thus Ratcliff (1990) found that increasing the number of hidden units in a backpropagation network was ineffective in reducing CI
. A more desirable learning algorithm would be one that encouraged the network to use as few of the hidden units as possible in learning a set of mappings. This would leave surplus resources for the network to use in learning the new set of mappings.

One such approach would be to encourage sparse internal representations. In a sparse representation, few of the units are active for a given pattern. Olshausen and Field (1996) showed that a self-organising network could be trained both to develop internal representations and to minimise the overall activity of its processing units. In a network that is being trained to associate patterns, one could envisage a learning algorithm which sought to minimise two cost functions. One function would measure the performance on the mapping, another would seek to turn off as many units as possible. The algorithm would adjust the network weights to minimise this overall cost during learning. There are two constraints for such an algorithm: it should employ only locally available information in adjusting the weights connected to each processing unit; and it should find solutions to the learning problem in a reasonable amount of time.

In short, the first solution to catastrophic interference advises the development of a new learning algorithm to encourage internal partitioning of resources.

b) Make sure L1 and L2 knowledge is consistent.

CI occurs because L1 and L2 want the network weights set in a different way. However, if L1 and L2 knowledge were consistent, then L2 would have little need to reset the weights. The current weight configuration would be broadly adequate for performing L2, so that only ‘fine-tuning’ as opposed to ‘resetting’ would be required. CI would be substantially reduced in this case. L1 knowledge would be representative of the kind of information necessary to perform L2. In a way, learning L1 would be equivalent to pre-training on L2-type knowledge. Thus Hetherington and Seidenberg (1989) and McCrae and Hetherington (1993) showed that pre-training a network to be good at the type of mappings that it would later be required to learn greatly reduced the interference between patterns during sequential learning. However, our model of L2 acquisition should not depend on two languages being highly similar, so this solution has limited potential.

c) Continue training the network on L1 as L2 is introduced.

A distributed network develops a set of connection weights that will perform all of the mappings in the training set, by continual exposure to those mappings. The network only makes small adjustments to the weights for any given mapping, which leads to a compromise set of weights that will perform all of the mappings. If we continue to train the network on L1 patterns as we introduce L2 - but keep the size of the weight changes small - then the network should gradually shift from purely performing L1 mappings, to a compromise set of weights that can achieve both L1 and L2 mappings. The network state will be governed by its performance on both languages.

This solution requires that there exists some internal buffer to intermix training on L2 and re-training on L1. McClelland, McNaughton, and O’Reilly (1995) have recently suggested that the hippocampus might serve the role of interleaving training patterns to allow distributed representations to develop in neocortex. In broader terms, one might imagine that continual use of L1 during L2 acquisition might serve to mix the training items sufficiently (so long as L1 usage causes similar weight changes to L2 acquisition). In short, with some added assumptions, this solution seems a plausible one.

d) Use different hidden units for each language.

The use of different hidden units to learn L2 knowledge within the same network would eliminate CI. This is a variant on the orthogonality solution. It is close to the separate network view, but doesn’t require the architectural assumptions of that model.

There are algorithms which actively add new hidden units to help learn new sets of data. One such algorithm is cascade correlation (Fahlman, 1991) and this technique has already been used to model the development of certain cognitive abilities (see e.g. Mareschal and Shultz, 1996). In bilingual terms, the operation of this algorithm would be as follows. The network would recruit enough hidden units for it to perform the mappings required in L1. When the network came to learn L2, weights to L1 hidden units would be frozen, new hidden units added, and the weights to the new hidden units trained to learn L2. It remains to be seen whether this type of system could model empirical data on language acquisition.

The cascade correlation algorithm raises a thorny issue, and one which is general to most connectionist models of cognitive processes. Where do the hidden units come from? (This is another issue that is generally swept under the carpet.) Usually when a modeller constructs a network model with a hidden layer, a rule of thumb is used to determine the number of hidden units such that the network can learn the required mappings but also show good generalisation. However a full account of the processes of development will have to answer a number of difficult questions. Where do these hidden units come from? How does the network secure their services? How does the network know to secure their services in the first place? The use of cascade correlation forces us to address these questions explicitly. If we are finally to decide between common or separate resources for learning a pair of tasks, our decision must be grounded in the more general principles underlying resource allocation.

Under the neural metaphor, hidden units are equivalent (at some level) to neurons. It cannot be the case that the recruitment of new hidden units reflects the growth of new neurons, since the growth of neurons ceases more or less at birth (Elman et al, 1996, p. 249). If representational resources cannot be generated from scratch, then the answer must be that those resources are already available to the system. Presumably there must be slack in the system, so that they may be co-opted without noticeable effect (the alternative is that when you learn something new, something, somewhere else gets worse). So to explain where hidden units come from, we need to assume a large resource pool. But we also need some principled procedure for knowing when to recruit new resources, and how those resources should be wired up to the existing system. One solution would be to have a surplus of units in the system, and high levels of redundant connectivity. Units could be discouraged from getting involved in computations unless necessary. This brings us back to the sparse learning algorithm which was outlined in a).

Summary.

We have described catastrophic interference and outlined elements of a solution that would allow a distributed network to integrate L2 into a system configured to perform L1. Those elements were: to use a large number of hidden units; to employ a sparse learning algorithm which encourages the network to use as few hidden units as possible in learning a set of mappings; and to maintain training on the first language as the second language is introduced.

5. Second language acquisition in the BSN model.

We are now in a position to outline our account of second language acquisition in the Bilingual Single Network model. We will use the example of visual word recognition (i.e. the orthography to semantics network), although the arguments also apply to auditory word recognition (i.e. the phonology to semantics network).

We start with a system containing L1, but which has hidden units to spare. When L2 acquisition starts, it is introduced slowly into the system, via a separate buffering system. Its presentation is gradual, and interleaved with continued training on L1. Continued use of L1 causes small changes to the O-S network which serve to keep L1 ‘refreshed’, as distributed representations are developed incorporating both L1 and L2 knowledge. Those representations are distinguished by the inclusion of language context information, but between language similarity effects may arise. One such example would be better than expected performance on L2 cognates (Caramazza and Brones, 1979; Cristoffanini, Kirsner, and Milech, 1986; Gerard and Scarborough, 1989).

This view predicts that were L1 ever truly to cease when L2 learning commenced, catastrophic interference would occur. Such a situation is rather unlikely. All uses of L1 - communication, reading, verbal thought - would have to cease simultaneously. Even then the loss would be gradual and attack the aspects of L1 least consistent with the incoming L2 knowledge.

The Orthographic autoassociator is trained to recognise the new word forms using the same buffering process. One way to avoid potential CI in this network would be to propose that it is a 2-layer network. In such a network, an L2 that used an inconsistent orthography would be orthogonal to L1 knowledge, and use different weights between input and output. An L2 that used an orthography consistent with L1 would not need to overwrite L1 knowledge in this network.

The study of second language attrition suggests that disuse of an L2 causes its knowledge to be progressively weakened (although the rate of this loss reduces over time). The weakening occurs because L1 and L2 share the same internal representations in the O-S network. The cumulative small weight changes generated by L1 use gently cannibalise the hidden units responsible for L2 O-S mappings. The weights for these mappings drift away from the settings required to perform the L2 mappings. Processing of the orthographic form of an L2 word produces a progressively weaker semantic output, which drops gently down to threshold and below. As this drift occurs, the ‘error score’ on the semantic output rises. The apparent ‘frequency’ of the word drops: in IA terms, its “base rate” reduces. However, re-use of this mapping quickly re-tunes the weights, and brings the word back above threshold. Note that in this distributed view, loss of vocabulary is not an issue of “losing access” or “failing to retrieve” an indelibly stored memory. It is a case of the slow drift of weights away from those required to generate the appropriate output.

Attrition effects act differentially on various parts of L2. The BSN model is not advanced enough to begin to formulate an account of syntactic or inflectional attrition. However, we may account for the pattern of lexical effects. In the O-S network, the continued refreshing of L1 knowledge causes maximal interference on inconsistent L2 knowledge. Non-cognates thus suffer more attrition than cognates in L2. Attrition of low frequency items will predictably pull these items below their recognition threshold first. If we see the orthographic autoassociator as a 2-layer net, L2 orthographic knowledge will show no attrition: if refreshment does occur in this network, the languages will not be competing for processing resources.

No attrition is found for semantic priming in L2. This is because semantic priming is caused by persisting activation over the semantic units, and the semantic units are common to L1 and L2. The way activation persists over these units will not be affected by changes in the way they are activated via connections from the hidden units in the O-S network. However, attrition may change the effective frequency of L2 words. This would lead to a change in the asymmetry of semantic priming effects between L1 and L2. As L2 words become weaker, they will profit more from priming by L1.

Conclusion.

In the second half of this chapter, we have sought to generate an account of second language acquisition in the BSN model. Without the possibility of such an account, the Single Network model of bilingual lexical representation (or, for that matter, any other element of bilingual language processing which uses a single network) would be very much weakened. While we have explored possible solutions, no working model has been produced to demonstrate that in practice, catastrophic interference can be avoided. This must be the topic of future work.

A potential integration of the BSN and BIN models.

As part of the preceding account, we suggested that a ‘sparse’ learning algorithm might reduce interference. To speculate a little, we might extend this view further. Consider the following circumstance. The language system starts with a single homogenous network to map between, say, word forms and their meanings. The learning algorithm will encourage as few of the internal processing units to be involved in computations as possible. But let us also assume, as is often the case with actual neural systems, that there is a spatial arrangement of processing units such that units involved in performing the same sorts of computations are clustered together. This may be implemented by intra-layer connections which are mildly excitatory between nearby units, and mildly inhibitory between more distant units. Then we train such a network on two tagged languages, as in the simulation in Chapter 7.

A principal components analysis will reveal that the hidden layer has formed separate representations for each language (as in Figure 7.2). This tells us that different units tend to be involved in the computations for each language. But now the hidden units involved in the computations for each language should be spatially separated as well. For example, L1 might use the left hand side of the hidden layer, L2 the right hand side - although overlap is possible where computations are similar. From an initially homogenous network, physically separate representations will have emerged. This solves the BIN model’s problem of ever having to make the decision to set up separate representations: they will emerge by virtue of the fact that the task the network has been assigned to learn contains similar clusters of mappings.

Note here that despite talk of the physical separation of the units processing each language, only units that are involved in different computations will self-organise themselves to different locations. For computations shared by both languages - for instance, the processing of cognate homographs / homophones - then the internal representations will overlap. Where there are similar mappings in each language, this will be reflected in overlapping internal representations. This network should therefore exhibit between language similarity effects. This means that the single or separate networks question would depend on the similarity relations of the two languages.

The preceding account is speculative. It is not clear that a self-organising pattern associator could be trained using current learning algorithms, nor that it would behave in the idealised fashion outlined here. For example, in current network, the same unit can be involved in different computations, but by responding in a different way (e.g. ON for L1, OFF for L2). This would make spatially separating the hidden units for each language more tricky. Nevertheless, this algorithm offers a picture in which the one versus two route debate becomes a matter of degree, and the opposing BSN and BIN models are reconciled, which is the ideal end to any story.
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Appendices A to D

A. Simulation word/nonword sets.

B. Experimental stimuli.

C. Orthographic characteristics of experimental stimuli in English and French.

D. Tables of within and between subjects t-tests for priming effects in Chapter 8.

E. Graph showing the priming by frequency interaction in non-linear connectionist networks.

Appendices are available on request.

Contact Michael Thomas at  m.thomas@ich.ucl.ac.uk
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Figure 10.6:  Mean RTs for responses to nonwords with different orthographic legality, split by language context of response.
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� as illustrated by the work of Seidenberg and McClelland (1989), Patterson, Seidenberg and McClelland (1989), Hinton and Shallice (1991), Plaut and Shallice (1993), Plaut and McClelland (1993), Plaut, McClelland, Seidenberg, and Patterson (1996), Plaut (1996), Plaut (in press).


� This is the notion of Turing equivalence, that all computable functions may be realised on a Universal Turing Machine.


� For a more detailed discussion of the concept of distributed representation, see van Gelder (1991).


� See Sartori (1988), Bullinaria and Chater (1995), Plaut (1995b).


� Funnell and Allport (1987); Schwartz, Marin, and Saffran (1979).


� There are currently significant problems in extending the model to multi-syllabic words. A solution to these problems may require the postulation of a morphemic level of representation. Consideration of this issue is beyond the scope of the current project.


� While non-cognate homographs have the same orthographic form in each language, they rarely have the same pronounciation. To explore representation of the written form, we must therefore use a task which focuses on orthographic information as much as possible, and minimises the role of phonological information. The pseudohomophone effect in the lexical decision task suggests that phonological information can play a role in written word recognition. However, this effect is not a major determiner of response times, and some have debated both its existence and the role of phonology in normal performance (e.g. Seidenberg and McClelland, 1989). Thus non-cognate homographs may serve as a reasonable test of language partitioning in the bilingual’s lexical representations.


� However, note that this interpretation is not necessarily consistent with Grainger and Beauvillain’s findings. While English and German share the same script, words from one language may be orthographically illegal letter strings in the other. Grainger and Beauvillain found a switch cost only when words were legal in both languages. If this is the same effect, we would expect Meyer and Ruddy’s results to show a switch cost when both stimuli of the pair were legal in both languages, but no switch cost if the stimuli possessed orthographic characteristics unique to English or German.


� The various types of priming will be reviewed in more detail in Chapter 5, in the context of their simulation in distributed models of the word recognition system.


� interestingly, mixing at the level of phrase usually preserves structural consistency (Lindholm and Padilla, 1978), suggesting that switches in language are constrained rather than random.


� Grainger and Dijkstra did not include a monolingual condition to demonstrate that in the absence of a competing language, patriots, neutrals, and traitors behaved the same. However we will assume that these findings are valid.





� Grainger and Dijkstra don’t comment on whether the activation of the language units can be mediated by internal control processes. This would constitute a voluntary input switch. The implication of their model appears to be that the activity of language units is purely driven by features of the input.


� One might suggest that both lexicons should be processed simultaneously and in parallel, but then language no longer becomes a search criterion for the model, and it reverts to the language “tag” model. Although see next Section, and later discussion of French and Ohnesorge (1996).


� There are grounds to question this interpretation of Beauvillain and Grainger’s results. This is because the interpretation depends crucially on the assumptions one makes about the ability of the bilingual to control their lexical access in each language, and alter it between presentation of prime and target.


� This excludes the situation where the networks for each language are spatially overlapping but separated by connectivity. In fact this situation is unlikely, since it is a poor engineering solution: neighbouring neurons can’t help each other in computations, which is something they like to do. 


� Later models using this framework, such as Plaut (1995a), have employed attractor networks rather than strictly feedforward networks. Therefore the answer to this question is likely to be that semantic units take longer to settle into their attractor basins than phonological or orthographic units. 


� see also Moss, Hare, Day, and Tyler (1994), Bullinaria (1995b).


� We will not be considering priming in the network mapping between orthography and phonology. This is for two reasons. Firstly, the long term word repetition priming effect in the lexical decision task is not postulated to lie in this network. Secondly, Seidenberg and McClelland (1989) examined priming in the orthography-to-phonology route in their original simulations.


� The actual values for the total number of active semantic features over the 20 word lexicon for the three versions of the 3% sparseness coding were 74, 69, and 68 features.


� Keatley, Spinks, and De Gelder (1994) have shown that short term translation equivalent priming effects are asymmetrical in unbalanced bilinguals, such that L1 tends to prime L2 more than vice versa. In a network model, we might assume that L1 words are high frequency and L2 words low frequency. In this case, it is not surprising that an L2 target experiences greater priming than an L1 target: this is simply another instantiation of the greater priming effects experienced by low frequency words. By the same token, it is also likely that the “high frequency” L1 prime would generate stronger semantic activation than the L2 prime. The stronger activation would be more likely to persist, and be able to facilitate the target. This would further reinforce the asymmetry of the priming effect.


� For a further explanation of the ceiling effect and the frequency by priming interaction, see Appendix E.





� This explanation is analogous to that used to support Seidenberg and McClelland’s single route model of naming: empirical evidence of consistency effects between operations supposedly carried out in separate routes, is taken to support the notion that both operations may be carried out over a single distributed representational resource (see Seidenberg, 1992).


� In terms of the BSN model, the response mechanism would respond No if the output tag on the orthographic autoassociator suggested an input string looked Spanish. The orthographic autoassociator would thus serve as a language classifier.





� Matching for French words was performed on the basis of the ratings of English translation equivalents. Initially, a French frequency rating was used (Imbs, 1971). However, a comparison of the frequencies for English and French translation equivalents showed much higher French ratings that English ratings. The difference was a factor of 2.5, but also varied across word types. For consistency, Kucera and Francis ratings were used for both languages.


� For comparison, Appendix D contains t-tests for all stimulus types, for both first presentation versus second presentation differences, and unprimed versus primed differences.


� One might respond that in Gerard and Scarborough’s study, the cross-language repetition block was unanticipated. Subjects had no reason to remember what words they had seen. However, Jacoby also employed a design where the test phase was unanticipated: the lack of anticipation of future testing does not appear to eliminate episodic strategies.


� Perry (1996) has evidence suggesting that the endogenous component may reflect time taken to re-establish response mappings after a switch. Using the same paradigm, the endogenous component was eliminated when the subject could hold their response mappings constant.


� It may be that subjects can configure the response mechanism to respond positively to activity in one lexicon, and negatively to activity in the other lexicon. Thus information from both lexicons will contribute to making a response. However, a switch of response weightings will still be required to  change which lexicon is responded to positively.


� Subject analysis, interaction of stimulus type (stimuli containing language information versus nonsense string) and trial type (non-switch versus switch), response times: F(1,14)=32.30, p<0.001; error rates: F(1,14)=19.23, p<0.001.


� these data were cropped if they fell more than 3.5 standard deviations from the mean (Kleinbaum, Kupper, and Muller, 1988). This eliminated 1.1% of the data points.


� Words presented in the wrong language context were excluded from this analysis, since it was unclear whether to group these responses with the word’s language of origin or the language context of presentation.


� taken from a set compiled by Oxford Computing Services: available by anonymous ftp at ermine.ox.ac.uk. English words: 20,000; French words: 100,000. Accents in the French corpus were ignored.


� cropped if they fell more than 3.5 standard deviations outside the mean (Kleinbaum, Kupper, and Muller, 1988), eliminating 2.2% of the data points.


� In the naming model, one route stores GPC rules, and the other route stores individual entries for each word. For consistency with the past tense model, in this discussion, we’ll refer to the latter route as the ‘exception’ route rather than the lexical route, even though this route in fact contains entries for all words. This simplification does not affect the line of argument.


� E.g. one could even produce an account of this effect consistent with the BSN model. In the Trace model (1986), McClelland and Elman duplicated word recognition networks to simulate parallel recognition of words across separate time slices. Similarly, we might conceive of duplications of the Seidenberg and McClelland framework to simulate the parallel recognition of words across space. We could then use this model to account for performance in the flanker task: different networks process the target and flanker words in parallel. In the bilingual case, we could then claim that the duplicate networks were able to set their language context vectors differently. This would then explain the apparent parallel access effects.


� eliminating CI in a network is linked to eliminating generalisation. Thus the failure to prevent pseudowords from generating pseudomeanings by increasing the number of hidden units in the O-S network (Figure 6.9) is in essence a replication of Ratcliff’s result. 
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								Figure 6.?: Priming effects in the Orthographic Autoassociator, using Weight

								Change. Scores show the difference between performance on an item when

								primed and unprimed. Positive values indicate facilitation. Results are averaged

								over three networks.

																																				pa-oo		5h		100		0.5
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						a) 100 Epochs of Training.

																																						15h		750		0.5

																																						0.000262		0.000019		-0.000003		-0.000019				0.000012		0.000007		-0.000002		-0.000001

																																						0.041822		0.014037		0.000715		-0.007679				0.002236		0.000354		0.000124		-0.000127

																																								0.000285		0.000081		-0.000128						0.000014		0.000007		-0.000004

																																								0.000191		-0.001193		-0.002381						0.000063		-0.000091		-0.000077

																																				wc-oo		5h		100		0.5

																																						0.037622		0.001606		-0.002877		-0.006302				0.00201		0.001217		-0.000621		-0.000399

																																						0.078604		0.030611		0.000952		-0.019653				0.001656		0.00039		0.000207		-0.000187

																																								0.01621		0.001048		-0.008271						0.000558		0.000268		-0.000213

																																								0.014606		-0.003911		-0.01754						0.000702		-0.000453		-0.000359

																																						5h		250		0.5

																																						0.012884		0.000717		-0.001022		-0.001366				0.00081		0.000393		-0.0002		-0.000121

																																						0.068144		0.018248		0.000422		-0.00959				0.001928		0.000412		0.000178		-0.000136

																																								0.005278		0.000709		-0.00229						0.000234		0.000109		-0.000082

																																								0.000967		-0.003998		-0.008776						0.000472		-0.000284		-0.000243

																																						5h		750		0.5

																																						0.003024		0.000099		-0.000135		-0.000295				0.000238		0.000091		-0.000045		-0.000028

																																						0.07143		0.012901		0.000222		-0.005655				0.002624		0.000527		0.000187		-0.000122

																																								0.001457		0.000213		-0.000583						0.000082		0.000038		-0.000027

																																								-0.006426		-0.005645		-0.005253						-0.000588		-0.000255		-0.000157

						b) 250 Epochs of Training.																																10h		250		0.5

																																						0.002496		0.000227		-0.000072		-0.000237				0.000145		0.000063		-0.000025		-0.000019

																																						0.048821		0.018084		0.000094		-0.011353				0.002067		0.000363		0.000158		-0.00015

																																								0.00162		0.00037		-0.000754						0.000073		0.000035		-0.000023

																																								0.000666		-0.002487		-0.005756						0.000193		-0.000183		-0.000156

																																						15h		250		0.5

																																						0.001239		-0.000217		-0.000303		-0.000393				0.000184		-0.000125		-0.000061		-0.000049

																																						0.042994		0.016404		-0.00098		-0.01267				0.002127		0.000459		-0.000201		-0.000202

																																								0.000568		-0.001096		-0.002394						0.000347		-0.000223		-0.00019

																																								0.000738		-0.002428		-0.005581						0.000137		-0.000165		-0.000154

																																						2-l		250		0.065

																																						0.01017		0.001961		0.000084		-0.000475				0.000322		0.000129		0.00005		-0.000017

																																						0.032564		0.015337		0.001819		-0.003109				0.001228		0.000223		0.000063		-0.00003

																																								0.004958		0.000948		-0.000949						0.000108		0.000044		-0.000017

																																								0.004726		0.000241		-0.001838						0.000126		0.000074		-0.000033

																																						15h		750		0.5

																																						0.000262		0.000019		-0.000003		-0.000019				0.000012		0.000007		-0.000002		-0.000001

																																						0.041822		0.014037		0.000715		-0.007679				0.002236		0.000354		0.000124		-0.000127

																																								0.000285		0.000081		-0.000128						0.000014		0.000007		-0.000004

																																								0.000191		-0.001193		-0.002381						0.000063		-0.000091		-0.000077

						c) 750 Epochs of Training.

						Figure 6.7: Comparison of priming effects in the Orthographic Autoassociator, using

						Weight Change, for different numbers of hidden units. Each network was

						trained for 250 epochs, with a learning rate of 0.5 and momentum 0. (N=3).

						a) Two layer network (no hidden units).

						b) 5 Hidden Units.

						c) 10 Hidden Units.

						d) 15 Hidden Units.

								Figure 6.?: Priming under conditions to minimise generalisation:

								15 hidden units, 750 epochs of learning.
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																												Figure 6.8: Semantic activity for words and nonwords in the Orthography

																												to Semantics network, for increasing levels of sparseness in the semantic codes.

								Does increasing the number of hidden units eliminate generalisation?

												Words		Nonwords		se		se

										2 layer net		80.60%		75.80%		2.10%		0.90%

										8 hiddens		80.00%		67.60%		2.20%		1.10%

										16 hiddens		81.70%		59.60%		2.80%		2.50%

										24 hiddens		83.30%		61.40%		2.20%		1.90%

										40 hiddens		83.30%		62.60%		2.20%		1.10%

								Does sparser coding eliminate generalisation?

																Words		Nonwords		se		se

										40 Semantic Units				40 @ 10%		82.80%		64.00%		2.20%		2.40%

										60 Semantic Units				60 @ 5%		75.00%		42.50%		2.50%		3.50%

										100 Semantic Units				100 @ 3%		78.30%		26.30%		2.20%		3.20%

																												Figure 6.9: Semantic activity for words and nonwords in the Orthography

																												to Semantics network, for increasing numbers of hidden units.
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																												Figure 6.11: Comparison of priming effects in the Orthography-to-Semantics																										Figure 6.12: Comparison of priming effects in the Orthography-to-Semantics

																												network, using Weight Change, for different amounts of training. The network																										network, using Weight Change, for networks with different numbers of hidden

																												had 16 hidden units and was trained with a learning rate of 0.5. (N=3).																										units. The networks were trained for 100 epochs, with a learning rate of 0.5

																												Values show <Unprimed - Primed> error. Positive values indicate facilitation.																										and a momentum of 0. Results are averaged over 3 runs of each network.

						wc-os		16h		100		0.5		10% of 40														a) 100 Epochs of Training.																										a) 2-layer network (no hidden units).
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																												c) 750 Epochs of Training.																										c) 16 hidden units.

																																																						d) 24 hidden units.

																												Figure 6.13: Comparison of priming effects in the Orthography-to-Semantics

																												network, using Weight Change, for semantic codings with different degrees of

																												Sparseness. The networks had 16 hidden units and were trained for 100 epochs,

																												with a learning rate of 0.5 and a momentum of 0. Results are averaged over

																												3 runs of each network. (Note that absolute values of priming are not comparable

																												across these networks, since they were performing different mapping tasks).

																												a) Average of 10% of features turned on per item, over 40 output units.

																												b) Average of 5% of features turned on per item, over 60 output units.

																												c) Average of 3% of features turned on per item, over 100 output units.
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