Disorders of Language
An introduction to aphasia and its basic forms

Michael Thomas
Birkbeck College

Introduction
- Structure of the course
- Historical background to aphasia
- Two modern approaches
- Basic forms of aphasia

Course

Reading List

Aphasia
- Same incidence as MS or Parkinson’s
- 200,000 in UK; 1M in US
- 90% caused by stroke, mostly in elderly
- Loss of (aspects of) language
- Can be accompanied by paralysis / weakness of right arm and leg

History
- Egyptians, Greeks, Romans
- 2800 BC: loss of language + treatment in Egyptian papyrus
- Hippocrates 400 BC: loss of speech ‘aphonia’
- Valerius Maximus, AD 30: selective problems with reading
- Confused with paralysis of tongue, deafness, mutism, stuttering
- Relation to brain?
 - heart seen as engine of thought (Aristotle)
 - mind seen as controlled by non-physical spirit (Descartes)
History

- 19th century
 - Gall = well-developed mental faculties correspond to large areas of cortex; language in frontal lobes
 - 1825 French physician Jean-Baptiste Bouillaud delivers scientific paper with same conclusion
 - 1830 Marc Dax, language in left hemisphere

- 1861 Paul Broca
 - Post-mortem reports of two patients with impaired language function
 - Tan (named after one of few utterances)
 - 1863, 8 more patients
 - All cases, damage = left anterior lesion
 - Additional patient, right anterior lesion + no language impairment

- Conclusion= impaired language production associated with left anterior damage to third frontal gyrus
- Suggestion of second type: posterior damage, impaired associations between language and thought
- Did not offer specific localisation

- 1884 Carl Wernicke
 - Aphasia + predominant difficulty with comprehension = lesions to left superior temporal lobe
 - Further type predicted, due to disconnection between anterior and posterior areas (conduction aphasia)
 - 1885: Lichtheim proposes diagrammatic form of model

- 1884 Carl Wernicke
 - Aphasia + predominant difficulty with comprehension = lesions to left superior temporal lobe
 - Further type predicted, due to disconnection between anterior and posterior areas (conduction aphasia)
 - 1885: Lichtheim proposes diagrammatic form of model

- 1861 Paul Broca
 - Post-mortem reports of two patients with impaired language function
 - Tan (named after one of few utterances)
 - 1863, 8 more patients
 - All cases, damage = left anterior lesion
 - Additional patient, right anterior lesion + no language impairment

- Conclusion= impaired language production associated with left anterior damage to third frontal gyrus
- Suggestion of second type: posterior damage, impaired associations between language and thought
- Did not offer specific localisation

- 1884 Carl Wernicke
 - Aphasia + predominant difficulty with comprehension = lesions to left superior temporal lobe
 - Further type predicted, due to disconnection between anterior and posterior areas (conduction aphasia)
 - 1885: Lichtheim proposes diagrammatic form of model

- 1965: Geschwind extends theory to produce “Wernicke-Geschwind” model
The Wernicke-Geschwind model

History
- 1885-1965: Why the 80-year delay?
- Early writings of Broca and Wernicke controversial
 - e.g. Pierre Marie (1906) proposed that:
 - All aphasia has some comprehension deficit
 - Broca's aphasics = interference with more posterior zone
 - Broca's area purely for motor aspects of speech
 - Critical lesions in Broca's aphasia are sub-cortical
 - And then Tan's brain turned up...

The brain of Paul Broca's patient, Tan
- Note the gross subcortical extent of the lesion in the coronal section - Tan case study supports Marie?

Why the 80-year delay? (cont.)
- 1860s John Hughlings Jackson - rejection of localisationist approach
- Head (1926) - more psychological description of aphasia, irrespective of neural correlates
- 1940s - Behaviourist approach rejects mentalistic analysis
 - External S-R schedules of reinforcement

Two modern approaches
- Cognitive neuropsychology
 - Single case studies looking for dissociations between psychological components of language system
 - Less concerned with relation to underlying substrate
- Syndrome approach
 - Groups patients according to symptoms, looks for common patterns of underlying damage
- Approaches interact; imaging may bring them together
 - Functional module may be realised by distributed network of brain areas
 - Imaging may help us link network with module via regions of brain damage
Cognitive neuropsychology

Input (e.g., picture of object) → Semantic System

Phonological Output Lexicon

Orthographic Output Lexicon

JCU has deficit
EST ok
JJ has deficit

Patient JCU: naming problem with semantic errors (Howard & Orchard-Lisle, 1984)
Patient EST: could give precise semantic info about objects unable to name (Kay & Ellis, 1987)
Patient JJ: naming problems, unable to give meanings, but could write word forms (Hillis & Caramazza, 1991)

Syndrome approach

- Let’s identify the broad types of language breakdown
- First, what are the language ‘areas’ of the brain?
 - Try poking it

The language areas

- Electrical mapping: Penfield and Roberts (1959)

The language areas

- Electrical mapping: Ojemann et al. (1989)
 nos. in circles = consistent failure in naming following stimulation

Cross-species comparison

Relevant brain areas

Left hemisphere lateral view
Right hemisphere medial sagittal view (tilted to show basal surface of temporal lobe)
Types of Aphasia: The Wernicke-Geschwind model

Basic forms of aphasia

- Broca's aphasia
- Agrammatism
- Wernicke's aphasia
- Jargon aphasia
- Conduction aphasia
- Word deafness
- Global aphasia

The Transcortical aphasias
- Transcortical motor aphasia
- Transcortical sensory aphasia

Subcortical aphasia
- Right hemisphere damage

Broca's aphasia

- Cinderella's story (from Saffran, Berndt, and Schwartz, 1989)

> a mother/... three kids/... bad mother/one kid beautiful/... rich/Italian/... mother/... stepmother/... talk about Cinderella/Cinderella/clean my house/... you Cinderella/close the door/... Cinderella like jail/... mother/... three kids/... I love mother/... Cinderella walk ball/... people ball/... rich people/... man and Cinderella dance dance dance party/... one/... dance dance dance... dance every time/... ball beautiful people/... people watched Cinderella/... Cinderella... beautiful clothes... and garments/... twelve o'clock night/ Cinderella/ oh no/ oh no/ I'm sorry/ I'm sorry people/ I love you baby/... walk walk/ tumble/... one shoe bye-bye/... Cinderella... pumpkin cab/... oh shoe/ oh please/ oh well/ walk pumpkin car/.

Broca's aphasia

- Symptoms:
 - Difficulties in production (lack of function words and inflections), some problems in comprehension of syntax (e.g., reversible sentences)
 - Non-fluent / Agrammatism
 - Repetition difficulties
- Type of damage:
 - In excess of Broca's area. Arterial system means motor areas typically also damaged
- Problems with simple model:
 - 1. Lesion location - need to damage more than original Broca's area; Broca's alone = articulation difficulties
 - 2. Term too broad, individual variability of agrammatism: small vs. large Broca's patients; function word/inflection deficit dissociate from word order deficit; (syntactic) comprehension deficits

Patient with small Broca's aphasia

- Initial speech assessment (Andrewes, 2001, p.309)

HH: Sometimes I say "yes"... [halts in mid sentence] when I mean "no". I realise immediately afterwards that I have said the wrong thing and ... correct myself.
DA: Does this happen often?
HH: ... [Appears to be thinking about what to say and lunges forward as if forcing out the word] "no" (we both saw the humour in the situation, but he refrains from elaborating).
DA: How does this affect your everyday life?
HH: It's a problem when ... converse with the mates.
(Subtler) comprehension deficits

- Problems with syntactic aspects of comprehension
 - "Point to the picture that goes with The brown dog is chased by the white horse"

Wernicke’s aphasia

- Symptoms:
 - Comprehension difficulties
 - Fluent (sometimes excessive), word finding difficulties, paraphasias, excess of grammatical words but paucity of meaning; some syntactic difficulties
 - Severe ‘jargon’ aphasia: neologisms (new words) + lack of awareness
 - Repetition difficulties

- Type of damage:
 - In excess of original Wernicke's area. Posterior superior temporal gyrus still appears crucial

- Problems with simple model:
 - Patients appear to be aware of meaning they are trying to produce: Not semantic deficit but communication with phonological output system?
 - Lack of awareness of jargon implies 'unconscious' route to production

Patient with Wernicke’s (jargon) aphasia

Interviewer: Can you tell me your address, Tom?
Tom: Four and pleasant, Plain Sodars. [There is no such district]
Interviewer: How long have you lived there?
Tom: I think that was only five, no eight prentices. Small plut be in there.
Interviewer: How old are you?
Tom: 80, 85 no 83 children. [His age is 83 years old]
Interviewer: What month is it?
Tom: Today? Well that would be ten. If I say, it used to be called Naym Prentice.
Interviewer: If I said it was May, what would you say?
Tom: That's correct, Naym Prentice.
Interviewer: Could you count up to ten?
Tom: A, B, C, D, E, F, M, P, N.
Interviewer: No, say after me: 1, 2.

[Tom then proceeds to count fluently with only a few errors]
Cookie theft (from Boston aphasia exam)

Wernicke’s vs. Broca’s aphasia

- **Description of cookie theft story**
 - **Wernicke’s patient** (Goodglass, 1983)

 "Well this ... mother is away here working her work out o’here to get her better, but when she's looking, the two boys looking in the other part. One their small tile into her time here. She's working another time because she is getting, too."

 - **Broca’s patient** (Helm-Estabrooks et al., 1981)

 "Well ... see ... girl eating no ... cookie ... no ... ah ... school no ... stop ... ah ... tip over ... and ah ... cookie jar ... ah ... kid ... no ... see ... water all over ... spilled over ... yuck ... Mother ... daydreaming."

Basic forms of aphasia

- **Conduction aphasia**
 - Symptoms:
 - Comprehension and production relatively intact
 - Repetition is predominant impairment
 - Type of damage:
 - Supramarginal gyrus and insula (close to arcuate fasciculus)
 - Problems with simple model:
 - W-G model suggests disconnection but why is expression okay? Shouldn’t concepts be disconnected from syntax and articulation, impairing production?
 - Possibly problem with working or short-term memory

- **Global aphasia**
 - Complete loss of language
 - If recovery, comprehension before production, to state like Broca’s
 - Type of damage:
 - Damage of all language areas

- **Pure word deafness**
 - Patients unable to hear phonological form of words
 - Production may be faultless
 - Type of damage:
 - Bilateral lesions to posterior temporal plane (Heschl's gyrus)
Transcortical aphasias

- Known since Wernicke's time that aspects of Broca's and Wernicke's aphasia could appear in patients who had a preserved ability to repeat back.
- Due to damage outside perisylvian area - watershed infarction
- Position of damage (anterior / posterior) determines type of deficit
 - Transcortical motor aphasia (Broca-like)
 - Transcortical sensory aphasia (Wernicke-like)
 - (or both)

Damage depends on position of blockage

- Four of 1,200 consecutive patients with their first stroke showed acute transcortical mixed aphasia (TMA) characterized by nonfluent speech with impaired naming, semantic paraphasias, echolalia, impaired comprehension, good repetition, reading, and writing on dictation. All 4 had left internal carotid artery (ICA) occlusion with posterolateral anterior temporal infarction (frontal operculum/prefrontal-precuneus territory) and watershed infarction between the middle and posterior cerebral artery territories, which spared and isolated the perisylvian speech areas. Although rare, acute TMA is highly suggestive of infarction due to ICA occlusion, in that it is probably related to simultaneous embolic anterior (Broca's aphasias) and hemodynamic insufficiency (posterior watershed infarction).
Transcortical aphasias

- Transcortical Motor Aphasia
 - Type 1
 - Dysexecutive production problems (echolalia, perseveration)
 - Prefrontal lesion superior to Broca’s area
 - Type 2
 - Motor initiation symptoms
 - Reduced motivation and drive, lower limb paralysis
 - Lesions in anterior cingulate and left supplementary motor area

- Transcortical Sensory Aphasia
 - Type 1
 - Comprehension problems, extreme difficulty naming objects / pictures, semantic paraphasias, visual object agnosia
 - Damage inferior and posterior to Wernicke’s area (non-overlapping)
 - Type 2
 - Word finding difficulties, few content words, difficulty with complex relational sentences - “semantic” aphasia
 - Superior angular gyrus and posterior parietal damage

Subcortical aphasia

- Can aphasia be due to sub-cortical damage (e.g., to thalamus)?
- Do sub-cortical structures play a processing role or just connectivity?
- Nadeau and Crosson (1997): subcortical damage associated with
 - Anomia in spontaneous language
 - Poor verbal fluency
 - Problems in confrontation naming
- Ullman & Pierpont (2005)
 - Grammar uses ‘procedural’ memory system – a network including basal ganglia / cortico-thalamic loops

Subcortical aphasia

- But
 - could be remote effects on distant cortical areas
 - or metabolic effects on adjacent cortical areas
- thalamus may play role in boosting focus or selectivity of function
- may be part of sub-cortical circuit for complex motor articulation

Right hemisphere

- Damage to RH associated with deficits in prosody (production and comprehension)
- Hemisphere has limited speech expression
 - Swearing, emotionally charged words, singing, stereotyped phrases
- RH comprehends overall context or theme
- RH damage associated with
 - Deficits in thematic inferences
 - Deficits in non-literal language processing
 - Reduced sense of humour
Conclusion

What does the set of aphasias tell us about how language works?

Modifications to Wernicke-Geschwind model

1. Broca’s area itself associated with articulation deficits. Agrammatism requires larger area of damage
2. Broca’s aphasics also have comprehension deficits for information related to syntax
3. Conduction aphasia not disconnection but impairment in phonological working memory
4. Jargon aphasia implies dissociable conscious and unconscious routes from posterior areas to production areas
5. Subcortical structures implicated in connectivity between regions
6. Right hemisphere plays a role in prosody and thematic processing