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Computational models of bilingual comprehension

Abstract

This chapter reviews current computational models of bilingual word recognition. It begins with a discussion of the role of computational modeling in advancing psychological theories, highlighting the way in which the choice of modeling paradigm can influence the type of empirical phenomena to which the model is applied. The chapter then introduces two principal types of connectionist model that have been employed in the bilingual domain, localist and distributed architectures. Two main sections then assess each of these approaches. Localist models are predominantly addressed towards explaining the processing structures in the adult bilingual. Here we evaluate several models including BIA, BIMOLA, and SOPHIA. Distributed models are predominantly addressed towards explaining issues of language acquisition and language loss. This section includes discussion of BSN, BSRN, and SOMBIP. Overall, the aim of current computational models is to account for the circumstances under which the bilingual’s two languages appear to interfere with each other during recognition (for better or worse) and those circumstances under which the languages appear to operate independently. Based on the range of models available in the unilingual literature, our conclusion is that computational models have great potential in advancing our understanding of the principal issues in bilingualism, but that thus far only a few of these models have seen extension to the bilingual domain.

Introduction

In this chapter, we review the use of computational models in formulating theories of bilingual language comprehension, focusing particularly on connectionist (or artificial neural network) models. Over the last twenty years, a huge amount of research has been generated by the use of connectionist models to study processes of unilingual comprehension and production. Models have been put forward to capture the final adult language system and to capture the developmental processes that lead to this system. Within psycholinguistics, computer models have emerged as an essential tool for advancing theories, because of the way they force clear specification of those theories, test their coherence, and generate new testable predictions. In the following sections, we compare and contrast two types of model that have been applied to bilingual word recognition. These are the localist ‘interactive activation’ adult-state models of van Heuven, Dijkstra, Grainger, Grosjean, and Lewy (e.g., BIA, SOPHIA, BIMOLA), and the ‘distributed’ developmental models of Thomas, French, Li and Farkaš (e.g., BSN, BSRN, SOMBIP). We explore how these models have accounted for empirical data from bilingual word recognition, including cross-language priming, similarity, and interference effects. We then evaluate the respective strengths and weaknesses of each type of model, before concluding with a discussion of future directions in the modeling of bilingual language comprehension.

Early views of the word recognition system

Historically, theories of unilingual word recognition have always appealed to metaphors of one kind or another to characterize the cognitive processes involved. For example, two theories of the 1970s appealed either to the metaphor of a ‘list’ of words that would be searched in serial order to identify the candidate most consistent with the perceptual input, or the metaphor of a set of word ‘detectors’ that would compete to collect evidence that their word was present in the input (e.g., Forster, 1976; Morton, 1969). The limitation of such theories was that they were often little more than verbal descriptions. There was no precision in the specification of how such recognition systems would work. As a result, it was not always possible to be sure that the theories were truly viable or to derive specific testable hypotheses that might falsify them. Early models of bilingual word recognition shared this general character, for instance focusing on whether the bilingual system might have a single ‘list’ combining words from both languages or separate lists for each language (in which case, would the lists be searched in parallel or one after the other?). Theories of lexical organization speculated on whether bilingual ‘memories’ would be segregated or integrated across languages, and what ‘links’ might exist between translation equivalents in each language or between semantically related words in each language (see e.g., Grainger & Dijkstra, 1992; Meyer & Ruddy, 1974; Potter, So, von Eckhardt, & Feldman, 1984; and Francis, chapter XXX, for a review). The advent of widespread computational modeling has changed the nature of theorizing within the field of bilingual language processing, to the extent that such models are now an essential component of most theoretical approaches. The consequence has been an advance over recent years in the precision and rigor of theories of bilingual language comprehension.

Use of computational models

Computational models force clarity on theories because they require previously vague descriptive notions to be specified sufficiently for implementation to be possible. The implemented model can then serve as a test of the viability of the original theory, via quantitative comparisons of the model’s output against empirical data. This is a particular advantage where the implications of a theory’s assumptions are difficult to anticipate, for instance, if behavior relies on complex interactions within the model. Models also allow the generation of new testable hypotheses and permit manipulations that are not possible in normal experimentation, for instance the investigation of systems under various states of damage. There are more subtle implications of using computational models that bear consideration, however.

First, although computational models are evaluated by their ability to simulate patterns of empirical data, simulation alone is insufficient. Models serve the role of scaffolding theory development, and as such it is essential that the modeler understands why a model behaves in the way that it does. This means understanding what aspects of the design and function of the model are responsible for its success when it succeeds in capturing data, and what aspects are responsible for its failure when it does not.

Second, different types of model embody different assumptions. Sometimes those assumptions are explicit, since they derive from the theory being implemented. For example, in a bilingual system, word detectors might be separated into two pools, one for each language, as an implementation of the theory that lexical representations are language specific. However, sometimes assumptions can be implicit, tied up in the particular processing structures chosen by the modeler. Such choices can make the model appropriate to address some sorts of empirical phenomena but not others. The particular processing structure chosen may also influence the theoretical hypotheses that are subsequently considered. For example, let us say that a bilingual model is constructed that implements a system of discrete word detectors, and moreover that the modeler must now decide how to include words that have the same form but different meaning in the bilingual’s two languages (interlingual homographs). By virtue of plumping for discrete detectors, the modeler is forced into a binary theoretical choice: either both languages share a single detector, or each language employs a separate detector.

In the following sections, therefore, it is worth considering that the choice of model type can affect both the phenomena that are examined and the types of hypothesis that are considered within its framework.

Two modeling approaches

Most computational models of bilingual word comprehension have worked within the connectionist tradition, that is to say, computational models inspired by principles of neurocomputation. Although these are high-level cognitive models, they seek to embody characteristics of neural processing based on two beliefs. The first is the belief that the functional processes and representations found in the cognitive system are likely to be constrained by the sorts of computations that the neural substrate can readily achieve. The second is the belief that models employing ‘brain-style’ processing are more likely to allow us to build a bridge between different levels of description, for instance to connect behavioral data and data gained from functional brain imaging. However, the appropriate level of biological plausibility of a model’s computational assumptions is still a matter of debate. By definition, models contain simplifications. Necessarily, they will not incorporate all characteristics of the biological substrate, but instead appeal to a more abstract notion of neurocomputation. 

Bilingual researchers have appealed to two different types of connectionist models in studying processes of comprehension. These are ‘localist’ and ‘distributed’ models. Both types share the neural principle that computations will be achieved by simple processing units (analogous to neurons) connected into networks. Units have a level of activation (analogous to a firing rate), and each unit affects the activity level of the other units depending on the strength of the connections between them. The models differ in the extent to which they emphasize changing the connection strengths as a function of experience, and whether individual units in the network are to be assigned prior identities (e.g., as corresponding to a particular word, letter, or phoneme). Note that neither approach claims a direct relationship between the simple processing units contained in the models and actual neurons in the brain. Rather, the attempt is to capture a style of computation.

Localist models

Localist models tend to assign discrete identities to individual units, for instance splitting networks into layers of units corresponding to ‘letter features’, ‘letters’, and ‘words’. Localist models also tend not to focus on changes in the model through learning. Instead, connection strengths are set in advance by the modeler, as a direct implementation of his or her theory. These models can be seen as direct descendants of the original word detector models proposed in the 1970s, where each simple processing unit corresponds to the detector for the existence of a given entity in the input, and a network comprises a set of linked detectors. Since these models do not incorporate change according to experience, their focus within bilingual research has been to investigate the static structure of the word recognition system in the adult bilingual (or the child at a single point in time). Their main advantage is that all network states are readily comprehensible, since activity on every unit has a straightforward interpretation. Although localist models seem simple, their behavior can be quite complex through the interaction between units within and between layers.

Distributed models

In contrast, distributed models tend to represent individual entities (like words) as patterns of activity spread over sets of units. The entity being represented by a network cannot therefore be identified by looking at a single unit, but only as a code over several units. Secondly, distributed models tend to focus on experience-driven change, specifically on learning to map between codes for different types of information (such as a word’s spoken form and its meaning). Connection strengths in such a network are initially randomized, and a learning rule is allowed to modify the connection strengths so that over time, the system learns to relate each word to its meaning. In addition, these networks can contain banks of ‘hidden’ processing units that, during learning, can develop internal representations mediating the complex relationship between input and output. Since these models incorporate changes according to experience, they can be applied more readily to issues of language acquisition and change in language dominance over time. However, patterns of activity over hidden units are less readily interpreted, and these models are sometimes thought of as more theoretically opaque.

The relationship between the models

The relationship between these two types of model is a complex and controversial one (see e.g., Page, 2000, and Seidenberg, 1993, for arguments in favor of each type of model). In the previous sections, we have described the ways in which each type of model has tended to be used, rather than stipulating necessary features of their design. Ultimately, the distinction between the two types is not a dichotomous one but a continuum, and depends on the degree of overlap between the representations of individual entities within the model, that is, the extent to which processing units are involved in representing more than one entity. Aside from emphasizing the different ways in which these models have been used, two points are worth making for current purposes.

First, although their details are different, the model types are closely related in that they explain behavior by appeal to the distribution of information in the problem domain. In localist models, this pattern is hardwired into the structure of the model. In distributed models, it is ‘imprinted’ onto the structure of the model by a learning process. To illustrate, let us say that one language has a higher frequency of doubled vowels (or some other statistical difference) than another language. A localist model built to recognize the first language will show superior ability in recognizing doubled vowels because it contains in its structure many word units that have doubled vowels, each poised to encourage detection of this pattern in the input. A distributed model trained to recognize the first language will show a similar superior ability because during learning, by virtue of more frequent exposure to doubled vowels, it will have developed stronger weights linking input codes containing doubled vowels to its output units representing word meaning or pronunciation. In either case, the explanation of the superior performance is the distributional properties of the language that the system is recognizing – in this example, the high frequency of doubled vowels.

Second, while localist and distributed models have different advantages for studying various phenomena of bilingual language processing, the characteristics of these models must eventually be combined. A final model must reflect both how the bilingual system is acquired as well as details of its processing dynamics in the adult state.

Issues to be addressed in the modeling of bilingual language processing

Before turning to the specific empirical data from bilingual language comprehension that computational models have sought to capture, it is worth considering the general issues pertaining to bilingual language processing that appear throughout this book, so that we may evaluate the potential of both current and future connectionist models to address them. Here are some of the most salient issues:

· Do bilinguals have a single language processing system, different processing systems, or partially overlapping systems for their two languages?

· How is the language status of lexical items encoded in the system?

· What interference patterns result from having two languages in a cognitive system?

· How can language context be manipulated within the system, in terms of inhibiting/facilitating one or other language during comprehension or production (the language ‘switch’), or in terms of gaining or countering automaticity of a more dominant language?

· How is each language acquired? To what extent are there critical period effects or age of acquisition effects in the acquisition of an L2? To what extent are there transfer effects between a first and second language? How is an L2 best acquired – by initial association to an existing L1 or by a strategy that encourages direct contact with semantics (such as picture naming)?

· How is each language maintained, in terms of on-going patterns of relative dominance and/or proficiency?

· To what extent are the characteristics of bilingualism (such as dominance) modality specific (i.e., differential across spoken and written language, comprehension and production)?

· How is each language lost, in terms of aphasia after brain damage in bilinguals, or in terms of the natural attrition of a disused language, and how may languages be recovered?

We will contend that between them, localist and distributed models have the potential to inform every one of these issues. However, we begin by a consideration of the status of current models of bilingual word comprehension.

Localist approaches

Introduction

In psycholinguistic research, localist models of monolingual language processing have been used since the beginning of the eighties. In 1981, McClelland and Rumelhart (1981; Rumelhart & McClelland, 1982) used a simple localist connectionist model to simulate word superiority effects. This Interactive Activation (IA) model has since been used to simulate orthographic processing in visual word recognition. The model has been extended with decision components by Grainger and Jacobs (1996) to account for wide variety of empirical data on orthographic processing.

IA models were used to simulate word recognition in a variety of languages (e.g., English, Dutch, French) but in each case purely within a monolingual framework. Dijkstra and colleagues (Dijkstra & Van Heuven, 1998; Van Heuven, Dijkstra, & Grainger, 1998) subsequently extended the IA model to the bilingual domain. They called this new model, the Bilingual Interactive Activation (BIA) model. Both the IA and BIA models are restricted to the orthographic processing aspect of visual word recognition, encoding information about letters and visual word forms in their structure. 

In the following sections we focus on the BIA model, and examine how this model can or cannot account for empirical findings on cross-language neighborhood effects, language context effects, homograph recognition, inhibitory effects of masked priming, and the influence of language proficiency. We end this section with a short discussion of a localist model of bilingual speech perception (BIMOLA) and a new localist bilingual model based on the theoretical BIA+ model (Dijkstra & Van Heuven, 2002) that integrates orthographic, phonological, and semantic representations (SOPHIA).

The BIA model

Structure

The BIA model is depicted in Figure 1. It consists of four layers of nodes. It shares with the IA model the same lower level layers of feature and letter nodes, whereby the features and letters are coded for each position of a four-letter word. There are 14 visual features and 26 letters for each position. The two top layers in the BIA differ from the IA model. The BIA has a word layer of all Dutch and English four-letter words. Furthermore, the BIA model has a language node layer, assigning a single node to each language. Visual input in the model is coded as the absence or presence of letter features. At each position, letters are excited when they are consistent with a feature and inhibited when they are not consistent with a visual feature (in Fig.1, arrows with triangular heads represent excitatory sets of connections while those with circular heads represent inhibitory sets of connections). Each letter activates words that have that letter at the same position and inhibits words that do not have that letter at that position.

===================

Insert Figure 1 about here

===================

An important aspect of the BIA (and the IA) model is that all nodes at the word level are interconnected; they can mutually inhibit each other’s activation. This is called lateral inhibition. Furthermore, activated words feed activation back to their constituent letters. The parameters that regulate these interactions in the BIA model are identical to the ones used in the original IA model (McClelland & Rumelhart, 1981). Since words of both languages are fully connected to each other, the BIA model implements the assumption of an integrated lexicon. In addition, since the letters at the letter layer activate words of both languages simultaneously, the model implements the assumption of nonselective access. However, lateral connections allow the words of the two languages to compete and inhibit each other.

Moreover, this competition can be biased. Apart from the incorporation of two lexicons, the BIA model is special in its inclusion of language nodes, in this case one for English and one for Dutch. The language nodes collect activation of all words from one lexicon and once activated, can suppress the word units of the other language. The parameter that controls this inhibition is important to the behavior of the model (Dijkstra & Van Heuven, 1998). In the summary of simulation results with the BIA model below we will discuss the role of this top-down inhibition.

Processing

The behavior of the BIA in response to an input is determined by a combination of excitatory and inhibitory influences cycling around the network. Three components contribute to this interaction. First, activation flows up the network, from feature to letter to word to language nodes. In each case, the higher nodes with which the input is consistent are activated and those with which the input is inconsistent are inhibited. Second, at the word level, words (from both languages) compete with each other to be the most active. Third, activation also flows back down the network. Word units reinforce the letters of which they are comprised and language units inhibit words of the opposing language. Letters and words are therefore not processed in isolation but in the context of the words that contain these letters and of the languages of which words are members. 

Each time step (cycle), activation flows between the layers and the new activation of each node is calculated. After a few cycles, letters and words that are similar or identical to the input are activated. Thus, the word node that best matches the input string will reach the recognition threshold. The number of cycles it takes to reach this threshold can then be compared with human response latencies. The threshold can be at a fixed word activation level or it can vary around a mean (Jacobs & Grainger, 1992).

Modeling L2 Proficiency in the BIA model

An important aspect of the BIA model is that differences in word frequency are reflected in the resting-level activation of the words. High frequency words have a higher resting-level activation than low frequency words. Therefore, high frequency words are activated more quickly and reach the recognition threshold earlier then low frequency words. 

Word frequencies of Dutch and English taken from the CELEX database (Baayen, Piepenbrock, & Van Rijn, 1993) are converted into resting-level activations in the BIA model. These word frequencies reflect frequencies from a perfectly balanced bilingual. Most studies with bilinguals, however, use participants who acquired their second language later in life (“late bilinguals”) and who are less proficient in their second language. One consequence is that for these participants the (subjective) word frequencies of their second language are lower than the frequencies of their first language (especially for high frequency L2 words). In the BIA model this can be implemented by varying the resting-level activation range of the second language. This is not to assume that differences in proficiency can be explained solely in terms of frequency effects. For instance, greater knowledge of L2 grammar might result in relatively high L2 proficiency as well. However, the manipulation of resting activation nevertheless captures the empirical fact that L2 words tend to be comprehended and produced more slowly and less accurately than their comparable L1 translation equivalents in unbalanced bilinguals.

Language Nodes

Dijkstra and Van Heuven (1998) described several functions of the language nodes in the BIA model. For example, the language nodes represent a language ‘tag’ that is activated during word identification and that indicates to which language the word belongs. In addition, language nodes can inhibit words of the other language to reflect a “stronger” representation of, for example, the L1 language compared to the L2 language. As a result, L1 words will inhibit L2 words more strongly during recognition due to extra top-down inhibition from the language node. As indicated in Dijkstra et al. (1998), the BIA model would probably produce a similar functional behavior without top-down inhibition from the language nodes, when lateral inhibition at the word level is asymmetric between words of different languages (e.g., L1-words inhibit L2-words more than vice versa). 

Furthermore, top-down inhibition from the language nodes can be used to simulate context effects in word recognition. Thus the correct reading of an interlingual homograph depends on language context, an effect that the language nodes could implement. However, this function of the language might also be replaced by a decision mechanism, because results obtained with homographs suggest that bilinguals are not able to suppress non-target language candidates even in the context of being explicitly instructed to do so (Dijkstra, De Bruijn, Schriefers, & Ten Brinke, 2000).

Finally, language nodes collect activation from the word level and therefore serve as an indicator of the total activation of all the word nodes in their respective languages. Summed activation is an important notion in, for example, the multiple read-out model (MROM) of Grainger and Jacobs (1996). A large value, representing lots of word node activity, implies that the input must be fairly word-like. Summed activation is used as a criterion to make a “yes” response in the lexical decision task. Furthermore, summed activation is used to adjust the deadline of the “no” response (if the input is very word-like, give the word nodes more time for one of them to reach threshold, before deciding the input is actually a nonword). While MROM does not explicitly implement this summed activation as a representation in the model, the language nodes of the BIA model can be seen as an explicit implementation of this notion.

BIA Simulations

Neighborhood Effects

An interesting aspect of the BIA model is that it incorporates the IA model as part of its structure. One can therefore compare the behavior of the IA model inside and outside of the BIA structure. Indeed, examining two IA models, one for each language, would constitute a particular theory of bilingual word recognition (one where there was selective access of the input to each language and no top-down inhibition from the language nodes). Thus, the BIA model permits a detailed comparison of a selective access model with a nonselective access model.

In this way, Dijkstra and Van Heuven (1998) were able to compare three models of bilingual visual word recognition, each implementing a different theory: (1) a selective access model, simulated with the monolingual IA model; (2) the BIA model with top-down inhibition; (3) the BIA model without top-down inhibition. In addition, they changed the frequencies of the English words in the model by changing the resting-level range, to reflect the fact that the target empirical data for the models were collected from participants who were not balanced bilinguals. All other parameter settings were identical in the three models. The performance of each model was compared with the empirical results of Van Heuven, Dijkstra, and Grainger (1998), who demonstrated that the presence of neighbors (words that can be constructed by changing a single letter of a target word) in the non-target language slowed down word recognition in both Dutch and English. The presence of within-language neighbors accelerated recognition times in English but had an inhibitory effect on Dutch word recognition.

The correlation of the simulation data with the English word data showed that irrespective of the assumed frequency range, the BIA model that included asymmetric top-down inhibition (from the Dutch language node to English words) produced better simulation results than the other models. In contrast to the English results, for Dutch, high correlations were obtained with the selective access model that incorporated only the Dutch lexicon.

However, combining the results over both languages, the highest correlations over all experiments were obtained with a BIA model variant involving only top-down inhibition from the Dutch language node to active English words and a reduced English frequency range. Simulations showed that this model was able to capture for Dutch targets the inhibitory effect of Dutch and English neighbors and for English targets, the inhibition effect of Dutch neighbors and the facilitation effect of English neighbors. Thus, the model correctly simulated the different effects of within-language neighbors in Dutch and English.

Here we see an important exploratory role of computational modeling. Detailed comparison of the model’s performance against empirical data allows the evaluation of different theoretical assumptions once implemented in the model.

Priming Effects

Effects of non-target language neighbors have been also obtained in masked priming experiments (Bijeljac-Babic et al., 1997, for French and English). The BIA model can be used to simulate masked priming using the simulation technique described in Jacobs and Grainger (1992). This technique simulates masked priming by presenting the prime to the model on the first and second processing cycles, while on the third cycle and following cycles the target word is presented to the model. A simulation with the BIA model reported in Bijeljac-Babic et al. (1997) showed that the model captured the longer average target recognition times for same-language masked primes sharing orthographic similarity to the target (e.g., real - HEAL) than for cross-language masked primes also bearing orthographic similarity to the target (e.g., beau - BEAM). As with the empirical data, there was an effect of prime-target relatedness in both prime language conditions. 

Bijeljac-Babic et al. (1997) also demonstrated that the size of the cross-language inhibition effect of an orthographically similar masked prime on target recognition increased as a function of the participant’s level of proficiency in the prime word’s language. Employing the BIA model with a French and an English lexicon, and varying the resting activation of the word units in L2 to represent proficiency, Dijkstra, et al. (1998) successfully simulated the dependence of the cross-language inhibition effect on L2 proficiency. L2 neighbors have to be sufficiently active to interfere with L1 recognition.

The monolingual results from the control subjects in Bijeljac-Babic et al. (1997) were then simulated with the monolingual IA model. Interestingly, the results of the monolingual simulation deviated from those of the experiment because the model predicted a facilitation effect for the related condition whereas the empirical results produced no priming effect. According to the model, the overlap in several letters between nonword prime and target word should have resulted in faster target recognition. However, the model’s predictions are in line with several studies from the monolingual literature (e.g., Ferrand & Grainger, 1992; Forster, Davis, Schoknecht, & Carter, 1987). Dijkstra et al. (1998) have discussed possible stimulus confounds that may explain the divergence of empirical and modeling results in the Bijeljac-Babic et al. monolingual controls. Overall, the simulation results indicate that the BIA model can successfully simulate the effects of different levels of proficiency on cross-language masked priming. 

Interlingual Homographs and Cognates

Empirical data from studies employing cognates (e.g., the Dutch and English word FILM, with the same meaning in each language) and interlingual homographs (e.g., the Dutch and English word ROOM, which means ‘cream’ in Dutch) constitute a challenge for any model of bilingual word processing. For example, recognition latencies of interlingual homographs appear to be affected by such factors as task demands, list composition, and word characteristics (De Groot, Delmaar & Lapker, 2000; Dijkstra, Grainger, & Van Heuven, 1999; Dijkstra, Timmermans, & Schriefers, 2000; Dijkstra, Van Jaarsveld, & Ten Brinke, 1998; see Dijkstra & Van Heuven, 2002, for a review). Only models that include components to simulate task demands and strategic modifications of decision criteria depending on list composition will stand a chance of accounting for all experimental effects. However, it is still informative and useful to investigate what an orthographic processing model like the BIA model predicts with regard to how these words should be recognized, even without a sophisticated task level.

Interlingual homographs can be represented in the BIA model in two ways: (1) as a single word node with, for example, a summed frequency of the reading in each language or (2) as separate representations for each language, each with a frequency reflecting its usage in that language (Dijkstra, Grainger, & Van Heuven, 1999).

Simulations with interlingual homographs represented as one single node show that these homographs are always processed faster than control words. However, empirical data (e.g., Dijkstra et al. 1998) indicate that homographs are only faster in a generalized (language-neutral) lexical decision task, where bilinguals must identify whether the stimulus is a word in either of their languages. In an English lexical decision task, on the other hand, Dijkstra et al. found that homographs were recognized no more quickly than English control words. Thus, the representation of each pair of homographs with a single node in the BIA model cannot account for the data. 

However, when the interlingual homograph is represented by two separate word nodes in the BIA, one in each language, the model fails to recognize either one of the representations of the homograph (Dijkstra & Van Heuven, 1998). Both word nodes become strongly activated because of bottom up information but at the same time they inhibit each other as competitors at the word level. Therefore they will stay below the standard word recognition threshold. Dijkstra and Van Heuven (1998) showed that the BIA model with language-node to word inhibition can suppress the inappropriate reading of the homograph. Furthermore, they showed that with top-down inhibition from the Dutch language node to all English words the BIA model could simulate the results of the Dutch Go/No-Go task of Dijkstra et al. (2000), where subjects only generate a response if the stimulus is a word rather than making a yes/no decision. The BIA model captured the frequency-dependent interference effect observed for homographs when each homograph is represented with a separate node and a resting-level activation based on its within-language frequency. 

Other localist models

BIMOLA

Recently, a localist model has been developed to account for bilingual speech perception. This model is a called: Bilingual Model of Lexical Access (BIMOLA, Léwy & Grosjean, in preparation) and is depicted in Figure 2. This model is based on the interactive activation model of auditory word recognition, called TRACE (Elman & McClelland, 1986). BIMOLA has layers of auditory features, phonemes and words, just like TRACE has. However, unlike in TRACE, representations are not duplicated at each time slice. BIMOLA has a feature level that is common to both languages. On the other hand, the phoneme and word level are organized by language. This contrasts with the BIA, where the languages are not distinguished at the letter and word levels, other than the fact that L1 words and L2 words are connected to different language nodes.

===================

Insert Figure 2 about here

===================

Differences between BIA and BIMOLA

The BIA model and BIMOLA are both localist models that share properties like the parallel activation of words of both languages, but there are also some clear differences. While the BIA model has an integrated lexicon, BIMOLA has separate lexicons for each language. This means that during recognition in BIMOLA, L1 words only compete with other L1 words and L2 words only with other L2 words to reach threshold, whereas in BIA, all words compete with all other words through lateral inhibition, in a competition that can be biased by top-down activation from the language node level.

The BIA model incorporates competition between words of different languages to account for cross-language interference effects in visual word recognition (see above). As a model of speech perception, BIMOLA has to account for the empirical effects revealed in this different modality, such as the base-language effect in guest word recognition (see, Grosjean, 2001). To account for language context effects in speech perception, BIMOLA implements a top-down language activation mechanism that uses ‘global language information’ to activate words of a particular language. There are no explicit representations of language nodes in BIMOLA, but the top-down language activation mechanism included in this model can be seen as an implicit implementation of language nodes. However, the explicit language nodes in the BIA model differ from the top-down language activation mechanism in BIMOLA because they do not activate the words of the language they represent; rather, the language nodes only inhibit words of the other language. The mechanisms are, however, similar in that they alter the relative activation of the two languages. Here, we see an example of different theoretical assumptions incorporated into models of bilingual visual and speech perception in order to account for the different empirical effects of each modality. In other words, the modellers implicitly assume that the different demands of recognition in each modality have led to different functional architectures.

SOPHIA

Recently, Dijkstra and Van Heuven (2002) proposed a new theoretical model called the BIA+ model. This model is an extension of the BIA model with phonological and semantic representations. Language nodes are also present in the BIA+ model but they can no longer inhibit words of the other language. The orthographic, phonological, semantic, and language node representations are part of the identification system of the BIA+ model. In addition, the model has a task/decision system that regulates control (see Dijkstra & Van Heuven, 2002).

At this moment, the identification system of the theoretical BIA+ model has been implemented in a localist connectionist model (Van Heuven & Dijkstra, in prep). This implemented model is called SOPHIA (Semantic, Orthographic, and PHonological Interactive Activation model). The architecture of the SOPHIA model is shown in Figure 3. Unique for this model are the sub-lexical layers of syllables and clusters. The cluster layers consist of onset, nucleus, and coda letter and phoneme representations. 
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So far, simulations with this model have focused on monolingual monosyllabic word processing. SOPHIA is able to account for a number of effects in monolingual visual word recognition (priming data, the effects of consistency between orthographic and phonological codes, pseudohomophone effects, and the role of neighborhoods; Van Heuven & Dijkstra, 2001). The model is able to simulate effects that cannot be simulated by other models of visual word recognition that include representations of phonology, such as the Dual Route Cascaded (DRC) model (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) and MROM-p (Jacobs, Rey, Ziegler, & Grainger, 1998). In particular, SOPHIA can account for the facilitatory effects found for words with many body neighbors in the lexical decision task (Ziegler & Perry, 1998). Body neighbors are those neighbors that share their orthographic rime with the target word. The model is currently being applied to bilingual phenomena.

Conclusion

The BIA model, a localist model of bilingual orthographic language processing, has been successful in simulating several empirical data patterns, particularly those involving neighborhood effects in word recognition and in masked priming. A comparison with BIMOLA, a model of bilingual speech perception, illustrated that different theoretical assumptions may be necessary to capture empirical effects in visual and auditory modalities. The SOPHIA model can already account for several monolingual empirical findings. The model has great potential, especially when it implements all aspects of the BIA+ model to be able to simulate a wide variety of empirical findings in bilingual language processing.

Distributed approaches

Building a distributed model

The construction of distributed models of bilingual language comprehension differs from that of localist models in that it involves two stages. First the modeler constructs representations (or codes) that will depict the relevant cognitive domains. These domains might include phonological representations of spoken words, orthographic representations of written words, representations of word meaning, or representations of the identity of words appearing in the sequential strings that make up sentences. In addition, the modeler constructs a network architecture that will allow the relevant associations between the domains to be learned. However, connection strengths in the network are initially randomized, so the system begins with no content. In the second stage, the model undergoes training to learn the relevant mappings, for instance between each word’s form and its meaning. It is important to realize that in distributed models the modeler’s theory is implemented in the way initial representations are constructed, and in the architecture that is chosen by the modeler to learn the mappings.

Work in the area of distributed models of bilingual memory is relatively new. In the following sections we consider three distributed models of bilingual language comprehension. We then examine the potential of distributed models to investigate a range of phenomena of interest in bilingual language processing.

The Bilingual Single Network (BSN) model

Thomas (1997a, 1997b, 1998) considered in some depth how distributed models of the monolingual language system, such as Seidenberg and McClelland’s (1989) distributed model of word recognition and reading, might be extended to the bilingual case. Two hypotheses were considered: that the bilingual has separate network resources available to learn each language, along with control structures integrating the output of each network; or that the bilingual has a single combined representational resource, in which both languages are stored but each language is identified by language-specific contextual information (be that information based on differences in phonology, on differences in context of acquisition and usage, or simply an abstract language ‘tag’). The empirical evidence from visual word recognition contains both indications of the independence of lexical representations for each language (e.g., recognition of interlingual homographs according to within-language frequency (Gerard & Scarborough, 1989), a lack of long-term repetition priming between orthographically dissimilar translation equivalents (Kirsner, Smith, Lockhart, King, & Jain, 1984), as well as evidence of interference effects where there is cross-language similarity (for instance, in the slowed recognition of interlingual homographs compared to cognate homographs under some conditions (Klein & Doctor, 1992), and the speeded recognition of cognate homographs under other conditions (Cristoffanini, Kirsner, & Milech, 1986; Gerard and Scarborough, 1989).

One of the features of distributed networks is that the internal representations they develop depend on similarity patterns within the mappings they must learn (Thomas, 2002). Given that interference between the bilingual’s languages occurs when vocabulary items share some degree of similarity, Thomas (1997a, 1997b) decided to explore the Single Network hypothesis. This is the idea that interference effects are the consequence of attempting to store two languages in a common representational resource. The model therefore sought to capture a combination of empirical effects for independence and for interference as the emergent product of seeking to learn the form-meaning relations for two languages across a single representational resource.

Thomas constructed two artificial languages of 100 items each in order to examine the interference effects under carefully controlled circumstances. Words were constructed around consonant-vowel templates and included both a frequency structure and orthographic patterns either shared across the languages or distinct to one. The orthographic representations were similar to those included in the BIA model, involving the position-specific encoding of letters in monosyllabic words. Representations were constructed to represent each word’s meaning, based around distributed semantic feature sets (see Plaut, 1995, for a similar monolingual implementation; De Groot, 1992, for a related theoretical proposal). Finally, a binary vector encoded language membership. The network architecture of the Bilingual Single Network (BSN) model is shown in Figure 4, with the number of units in each layer included in brackets. This network was trained to learn the relationship between orthography and semantics.
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In this model, word recognition begins by turning on the relevant units at input for the letters of the word. The connection weights then carry this activation up to the internal or ‘hidden’ processing units. Further connections then activate the relevant semantic features for the target words. In essence, this model transforms an activation pattern for a word’s orthography to a pattern for its meaning in two stages.

Examination of the respective activation patterns for each word across the hidden units can give us an indication of the representations that the model has developed in order to recognize the words in two languages. As we suggested in our earlier discussion of modeling approaches, this set of distributed representations is less readily interpreted, since it is not hand-coded but the model’s own solution. A statistical technique called Principal Components Analysis allows us to examine the latent similarity structure in the representations that the model has learned.

Figure 5 depicts the structure of the internal representations, plotted on the two most prominent dimensions of a notional similarity space (which in fact has 60 dimensions, capturing decreasing levels of variance). The position of each vocabulary item is plotted in this 2D space. Two versions are shown, either (a) under conditions of equal training on each language or (b), under conditions where the network is exposed to one language three times as often as the other. Four pairs of words in each language are linked in the diagram, showing the representation of a cognate homograph in each language, an interlingual homograph, a translation equivalent with a different form but language-common orthography, and a translation equivalent with a different form and language-specific orthography.

This figure illustrates several points. First, the two parallel, vertical bands reveal that the network has developed distinct representations for each language, by virtue of the language membership information included in the input and output. Second, the representations contain similarity structure that reflects both common meanings. Thus, in Figure 5a, words with common meanings are roughly at the same vertical level. However, the emergent internal representations also capture common orthographic forms, illustrated by the related positions of homographs. Third, in the balanced network, the orthographic characteristics of the input have been exploited to provide further structure, such that translation equivalents with language-general orthographic patterns are represented more similarly than those without (in Fig. 5a, the line linking the translation equivalent in each language cluster is shorter when the two forms have language-general orthography than when they have language-specific orthography). However, this distinction is not apparent in the unbalanced network, Fig. 5b, where the dominance of L1 has not permitted the orthographic distinctions present in L2 to become apparent. Finally, the L2 representations in the unbalanced network are less well delineated, occupying a smaller area of representational space. L2 has not yet been encoded in sufficient detail.
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In functional terms, the model was able to demonstrate behavior illustrating both the independence of lexical representations as well as interference effects. In terms of independence effects, interlingual homographs showed within-language frequency effects, and there was an absence of cross-language long-term priming effects for translation equivalents (long term priming was implemented by giving the network extra training cycles on the prime, and then testing the change in recognition accuracy of the target). In terms of interference effects, the model demonstrated a disadvantage for interlingual homographs compared to cognate homographs, and in the unbalanced network, a facilitatory effect for cognate homographs in L2. Finally, the use of the common semantic output layer allowed the model to account for cross-language semantic priming effects.

Despite reconciling effects of independence and interference, this preliminary model has several disadvantages. For example, as we have seen, interlingual homograph recognition in lexical decision depends on task demands and stimulus list composition, while there is no way to achieve that flexibility in the current BSN model. In part this is due to the fact that lexical decision is a complex task that may involve the integration of multiple sources of information (see Thomas, 1997b, for a full discussion regarding monolingual distributed models). Second, the model includes obvious simplifications with regard to the use of two small artificial vocabulary sets.

Perhaps most seriously, however, this model is able to develop bilingual representations over a single resource because its exposure to each language is simultaneous and intermixed. On the other hand, it is well known that under conditions of sequential learning, where training on one set of mappings ceases and another begins, models of this sort are liable to show interference effects, ‘forgetting’ aspects of the first set of knowledge that are inconsistent with the second. This suggests that the BSN model might have difficulty capturing second language acquisition. Empirically, the commonly held view is that second language acquisition produces a bilingual lexicon not functionally different from when the two languages are acquired simultaneously, and L2 acquisition does not greatly interfere with L1 performance. Thomas and Plunkett (1995) explored the conditions under which such ‘catastrophic forgetting’ would occur in networks trained on two (artificial) languages, one after the other. Interference was a genuine problem, although it could be overcome by increasing the salience of the information encoding language membership. We will return to the issue of catastrophic forgetting shortly.

The Bilingual SRN and SOMBIP

Two further distributed models have addressed how the representations for the bilingual’s two languages may be separated within a single representational resource, or more specifically, where the information comes from that allows bilinguals to separate their two languages. The aim of these models was to examine how the implicit structure of the problem faced by the bilingual might lead to the emergence of differentiated internal representations, in the first case through differences in word order in sentences, in the second through differences in word co-occurrence statistics in corpuses of each language and in phonology.

French (1998) explored whether word order information would be sufficient to distinguish the two languages, in the Bilingual Simple Recurrent Network (BSRN) shown in Figure 6. The input to the model was a set of sentences in which the language could switch with a certain probability. Each language employed a different vocabulary. French constructed a model in which the input and output representations encoded the identity of all possible words in the vocabulary. A network was used which had cycling activation, such that every word could be processed in the context of the words that had gone before it in a sentence (the so-called Simple Recurrent Network or SRN; Elman, 1990). The network’s task was to predict the next word in the sentence. To do so, the network had to acquire representations of sentence structures in each artificial language. French found that, so long as language switches occurred with a sufficiently low probability (0.1%), differences in word order alone were sufficient to develop distinct representations for each language.
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Li and Farkas (2002) have developed an ambitious distributed model called the Self-Organizing Connectionist Model of Bilingual Processing (SOMBIP), aimed at capturing both bilingual production and comprehension. The model is shown in Figure 7. This work is impressive in that, of all the models, it incorporates most psychological detail in its representation of English and Chinese phonology and in its use of a training set derived from a bilingual child language corpus. The greater the detail incorporated into the model, the more closely it should be able to simulate patterns of empirical data. The model also seeks to include stronger constraints from the neurocomputational level, in its use of ‘self-organizing maps’ and the learning algorithms employed. Self-organizing maps are two-dimensional sheets of simple processing units which when exposed to a set of training patterns, develop a representation of the similarity structure of the domain across the sheet of units (see Fig.7). Such maps are found in the sensory cortices of the brain, where different areas of the map represent sensations from different areas of the body. In the SOMBIP model, two self-organizing maps were learned, one for the representation of the sounds of words in English and Chinese, and one for the meanings of words; associative links were then learned between the two maps.
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Although the SOMBIP model is ambitious in the number of psychological and neurocomputational constraints it incorporates, potentially increasing the validity of subsequent model findings, current results are preliminary and have yet to be directly compared to empirical data. Interestingly, one of the main theoretical claims of the model is that it can account for the language-specific aspects of the bilingual lexicon without recourse to language nodes or language tags. However, some of the design decisions within the model belie this claim. First, the phonological representations incorporate an additional vector (used to encode tonality) which only Chinese words employ. Such a vector would be sufficient to serve the same role as the ‘language membership’ information built into the BSN model, information which in that case was sufficient to distinguish two languages within a single set of representations. Second, the representations of word meaning used in the SOMBIP model are based on word co-occurrence statistics (thought to be a valid indicator of meaning in the unilingual case, because words with similar meanings tend to occur in similar sentence contexts). However, in the bilingual case, since the words making up the sentences of the two languages are different, this approach has the unfortunate effect of generating two entirely separate meaning systems. This is at odds with the generally held view that the bilingual lexicon has a single, language common level of semantic representation (see Francis, Chapter XXX; Chen & Ng, 1989; Kirsner, Smith, Lockhart, King, & Jain, 1984; Potter, So, Von Eckardt, & Feldman, 1984; Smith, 1997). Indeed SOMBIP ends up developing representations for the two languages that are so different (both phonologically and semantically) that an additional training procedure has to be included specifically to allow translation equivalents to become associated. Finally, the use of semantic representations based on word co-occurrence statistics leads to some odd assumptions in the model: One part of the system (used to derive such statistics; not shown in Fig.7) is given knowledge about the identity of all the words in the bilingual’s two vocabularies as part of its initial representations; yet the very task of another part of the model is to learn the identity of the separate word forms (the phonological map). Despite these difficulties, the SOMBIP is an interesting new model that awaits close evaluation against the empirical data.

Assessment of existing distributed models

These three distributed models explore ways in which bilingual lexical representations may emerge as a consequence of exposing a learning system (construed in broadly neurocomputational terms) to the particular problem that faces the bilingual during language comprehension. The models have in common the assumption that representations will emerge over a shared representational resource. This assumption is driven by parsimony in relating the bilingual system to the unilingual system: We should first explore whether single resource systems are capable of explaining the behavioral data before adding new assumptions to the models. In addition, the single resource provides a ready explanation for why cross-language interference effects should emerge in bilingual word recognition.

However, the alternate hypothesis that the bilingual’s two language systems employ entirely separate representational resources is not quite so easily dismissed, since cross-language interference effects could emerge merely from attempts to control and co-ordinate two competing systems. Drawing an analogy to current debates in research on reading and on inflectional morphology, Thomas (1998) discussed ways in which ‘single route’ and ‘dual route’ hypotheses can be distinguished empirically. In these other debates, there is a question about whether language behavior is generated by a single resource showing differential performance for different stimuli (in this case regular and irregular items) or whether separate processing mechanisms handle each type of stimulus. Thomas (1998) concluded from this analogy that the question will not be resolved simply on the basis of cross-language interference effects in adult bilinguals, but must appeal to wider evidence concerning acquisition, language loss and breakdown.

Distributed models of bilingual language comprehension remain at an early stage of development. In the following section, however, we suggest that, together with existing models within the monolingual domain, distributed approaches have the potential to address many of the key issues within bilingual language processing.

Potential applications of distributed models to bilingual phenomena

The issue of separate or shared representational resources is one that may be readily examined in distributed modeling, along with interference effects and the possible encoding of language status. However, monolingual models already exist that, if extended to the bilingual domain, would allow investigation of many of the key issues for bilingual language processing raised in the introduction. In this section, we outline some of the potential extensions.

Certainly in production, perhaps also in comprehension, language processes must be controlled according to language context, for instance to achieve a switch of language in production, or optimize recognition processes during comprehension. Several distributed models have been proposed that examine processes of control (e.g., Cohen, Dunbar, & McClelland, 1990; Gilbert & Shallice, in press). For instance, Cohen et al. used a distributed model to demonstrate how a naming process could achieve increasing degrees of automaticity and escape from attentional control as it experienced increasing degrees of training. These models could provide a basis for new accounts of the control of bilingual language systems, and the relation of control to language proficiency.

Of particular salience in work on second language acquisition is the question of critical periods, that is, the extent to which the ability to learn a second language is constrained by the age at which acquisition commences (see Birdsong, Chapter XXX, and De Keyser & Larson-Hall, Chapter XXX). Assuming that languages employ the same representational resources in the cognitive system, recent connectionist work has explored how age of acquisition effects can occur in a single network, when training on one set of patterns follows that on a first (Ellis & Lambon-Ralph, 2000). The results have demonstrated a reduction in plasticity for the second set of patterns, and poorer ultimate performance. This occurred because the first set of patterns had established dominance over the representational resource and optimized it for its own needs. Such a model might provide the basis for a computational exploration of critical period effects in second language acquisition.

The assumption that languages compete over a single representational resource is of course not a necessary one. Learning a second language may cause the recruitment of new resources. So-called ‘constructivist’ distributed networks that recruit hidden units to learn new sets of patterns would provide a profitable framework within which to explore this alternative (see Mareschal & Shultz, 1996).

However, the idea of a common resource provides a ready explanation for the interference and transfer effects during second language acquisition (see McWhinney, chapter XXX). Early distributed modeling work examined such transfer effects within several contexts, including the acquisition of pronouns in a second language (Blackwell & Broeder, 1992), the transfer of word order properties from L1 to L2 (Gasser, 1990), and the acquisition of gender assignment in French (Sokolik & Smith, 1992) (see, Broeder & Plunkett, 1994, for a review).

The idea that L2 acquisition takes place in a language system whose representations are conditioned by L1 processing, may also provide the opportunity to explain other aspects of the bilingual system. For instance, Kroll and Stewart’s (1994) Revised Hierarchical model postulates that in L2 acquisition, L2 lexical representations initially ‘hang-off’ L1 lexical representations, before making direct connections to semantics. It is quite possible that a distributed network system, initially trained on an L1, then trained on L2, would initially adopt the internal representations conditioned by L1 lexical knowledge to drive L2 production and comprehension, before undergoing the more laborious reorganization of the internal representational space that would establish direct mappings between semantics and L2 lexical knowledge. In other words, distributed models may be able to produce the Revised Hierarchical model as an emergent effect of the experience-driven re-organization of language representations within a distributed system.

Of course, L2 induced re-organization of representations implies a consequent effect on the original structure of L1 knowledge. We have already discussed the idea that the assumption of a single representational resource implies that decay of L1 knowledge might occur if immersion in an L2 environment entirely replaced L1 usage. An in-depth consideration of such ‘catastrophic forgetting’, including the conditions under which it should and should not occur according to neural network theory, can be found in Thomas (1997b). If these models are correct, a careful study of L1 performance under intense L2 acquisition should reveal systematic (though perhaps subtle) decrements in performance. Although there are anecdotal reports of such decrements, to our knowledge these effects have yet to be studied systematically.

The focus of distributed models on learning mappings between codes provides the potential to account for modality specific expertise in bilinguals, since the visual vs. auditory domains, and the spoken vs. written domains, instantiate different types of codes. Expertise in one domain does not necessarily transfer to expertise in another. Plaut (2002) provides a demonstration of how graded, modality-specific specialization can occur in a self-organizing distributed model of (monolingual) naming and gesturing, an approach that is readily extendible to bilingual language processing.

Finally, the ability of distributed systems to capture change over time allows them to address issues of language decay, either in the case where a language is no longer used (language attrition, e.g., Weltens & Grendel, 1993; see Thomas, 1997b for discussion of insights from computational learning systems) or in the case where a previously working bilingual system experiences deficits following brain damage (see Plaut, 1996, for discussion of distributed approaches in the monolingual domain).

In sum, much of the potential of distributed modeling shown in the monolingual domain remains to be exploited in the study of bilingual language processing.

Advantages and disadvantages of localist and distributed models

Localist and distributed connectionist models share the property that their behavior is strongly influenced by the structure of the problem domain which they encode. There are three principal dimensions where the emphasis of these models differs in practice. First, localist networks tend to include both bottom-up and top-down connections, which allow for dynamic patterns of activation to cycle through the network. Activation states therefore persist over time, allowing localist models to study the trajectory of activation states whilst processing a single input – for instance, in terms of ‘candidates’ that are initially activated before the system settles on a final solution, or in terms of short-term priming effects discussed in the BIA model. In addition, alterations in top-down activation, for instance from language nodes in the BIA model, or in the baseline activation of the word units in each language in the BIMOLA model, allow localist models to investigate the implications of changes in language context on recognition times. On the other hand, many distributed models have employed only bottom-up or ‘feedforward’ connections. This means that processing in such distributed models is completed by a single pass through the network. Activation values are computed in a single set of calculations, with no unfolding of activation states over time. However, as the complexity of distributed models increases, this distinction is becoming less salient. So-called ‘attractor’ networks are trainable distributed networks with both bottom-up and top-down connections (sometimes called ‘recurrent’ connections). Both the bilingual SRN model and SOMBIP model permit cycles of activation in their architecture (see also Thomas, 1997b, for an extension of feedforward networks to modeling short-term priming effects by the use of cascading activation in a feedforward network, as proposed by Cohen et al., 1990).

The second, related dimension where the modeling approaches differ relates to the type of data to which the output of the models is typically compared. Localist models with cycling activation eventually settle to a solution, which is either correct or incorrect given the task. These models therefore generate two types of data: a response time (number of cycles until the network settles into a stable solution) and an accuracy level (the percentage of trials on which the model settles onto the correct solution). Distributed models like the BSN that use a single set of calculations to derive activation values have no temporal component to processing. While the accuracy of the output can be calculated, there is no equivalent to response time. This restricts the data that simple distributed models can be compared against.

The third difference relates to the predominant use of handwired, fixed connections in localist networks, compared to learned connections in distributed models. As we have already discussed, this characteristic makes localist models more amenable to investigating the static structure of the adult bilingual language system, whereas distributed models are more amenable to examining processes of development and change within this system (Thomas, 2002). In principle, localist models can learn their connection strengths (Page, 2000), but this possibility has yet to be exploited in bilingual research.

Although we have seen both localist and distributed models explore the behavior of a bilingual system in which proficiency is greater in one language than in the other, it is nevertheless true that connectionist models of bilingual language comprehension have failed to address the implications of acquiring a second language when the processing structures for a first language are already in place. In the localist model, the unbalanced bilingual was simulated by giving the two sets of language nodes different resting activation levels; in the distributed models (both BSN and SOMBIP), the unbalanced bilingual was simulated by training the system on two languages simultaneously, but with one language represented in the training set more than the other. Second language acquisition remains an area to be explored using connectionist models. 

In our earlier discussion on approaches to modeling, we highlighted two central issues arising in the relation of computational models to theory. The first of these was the importance of understanding how a model works, so that a successful simulation can be directly related back to the theory that it was evaluating. One might refer to this characteristic as the ‘semantic transparency’ of a model.  On this point, we should note that localist computational models have often been viewed as superior, since the activation of each processing node corresponds to the confidence level that a certain concept is present in the input (be it a letter feature, a letter, a word, or a language). Every activation state can therefore be readily interpreted. Even unexpected emergent characteristics of interactive activation models that arise from the combination of bottom-up and top-down connections can be re-characterized in theoretical terms. On the other hand, distributed models in their trained state produce activation patterns across the hidden units without immediate semantic interpretations. Although analytical tools are available to investigate the computational solutions that the distributed network has learned (for instance, the Principal Components Analysis that produced diagrams of the similarity structure of the internal representations in the BSN in Figure 5), the requirement of additional analysis testifies to their reduced semantic transparency. The consequence is an increased difficulty in relating particular distributed models back to the theory that generated them. [Footnote 1.]

This brings us to our second issue. Decisions about the particular processing structures chosen in the model may implicitly influence the theoretical hypotheses considered by the modeler. Distributed models are often harder to interpret because during learning, the network explores a wider range of solutions than the modeler considers when handwiring a localist model. Although the distributed model is potentially less easy to understand, it is also potentially richer.

Two examples will suffice. The BIA model includes language nodes that receive activation from the word units in a given language. Each word is effectively given equal membership to a language, an assumption the modeler makes by giving the same value to each connection between a word unit and its language node. However, in a model like the BSN, although language context information is provided with every input, the network is under no obligation to use this information in learning the meaning of each word. The essential point about trainable networks is that they evolve processing structures sufficient to achieve the task. Therefore it is quite possible that a distributed system will use language context information only to the extent that it is necessary to perform the task (Thomas, 2002). For instance, it may use it to disambiguate interlingual homographs, but not cognate homographs, for the latter have the same status whatever the language context. Thus the distributed model allows itself the theoretical hypothesis that language membership may not be a universal, uniform representational construct, but a continuum that depends on the specific demands of the task. The flip side is that network solutions embodying such ‘shades of gray’ hypotheses may be harder to understand. But that does not make such hypothesis a priori more unlikely.

Secondly, representational states adopted by distributed systems may change the way we interpret empirical data. Here we take an example from monolingual word recognition. Early in the recognition of an ambiguous word like ‘bank’, priming can be found for both the word’s meanings (‘money’ and ‘river’). A localist interpretation might encourage the following view: that there are independent, localist representations of each reading of the ambiguous word, that both readings are initially activated during word recognition, but that subsequently the system settles into a single context-appropriate reading. However, a recurrent distributed network trained to recover the meanings of words from their written forms offers another theoretical possibility.

Kawamoto (1993) used a single representational resource to store the form-meaning mappings for a single language. In this network, the two meanings of an ambiguous word were distinguished by the context in which they were used. When the model was required to recognize the word in one of those two contexts, it went through an intermediate representational state that bore similarity to both meanings, before diverging to settle on one of the meanings. This model could account for the empirical data without requiring the simultaneous activation of independent, competing representations, since the intermediate, hybrid state could prime words related to either meaning. This model is relevant because the simultaneous activation of independent, subsequently competing representations is a processing assumption that is normally built into localist models – yet a distributed system with a single representational resource may well be able to account for empirical data suggestive of a localist architecture. Again, the implicit assumptions within different models encourage consideration of different theoretical hypotheses.

Finally, connectionist models embody abstract principles of neural computation, and we saw in the Li and Farkaš model, SOMBIP, a desire to include more constraints from neural processing. This approach encourages us to hope that one day, connectionist models of cognitive processing in bilingualism may make contact with functional data gathered from the neural substrate, both under normal circumstances and in breakdown.

What type of data might the more ‘neurally-plausible’ bilingual connectionist model attempt to account for? In bilingual aphasia, evidence suggests one or both languages may be impaired by brain damage, and patterns of recovery include the parallel recovery of both languages, selective recovery of one language, antagonistic recovery of one language at the expense of another, or alternate antagonistic recovery, where selective impairment of comprehension/production can alternate between the languages during recovery (see e.g., Green & Price, 2001). Such evidence suggests that bilingual connectionist models will have to be able to simulate selective damage and recovery of a single language, as well as selective damage of control structures necessary to account for alternate antagonism (Green, 1986, 1998).

In bilingual brain imaging, data from comprehension studies suggest that early bilinguals, who receive equal practice with their two languages from birth, process both languages with common neural machinery, corresponding to the classical language areas of the brain. In late bilinguals, the degree of language proficiency determines the pattern of neural organization, with highly proficient L2 users showing common areas but less proficient subjects showing different patterns of activation for the two languages (Abutalebi, Cappa, & Perani, 2001). Distributed connectionist models embodying increasing neural constraints should aim to reflect the role of language proficiency in determining whether the bilingual comprehension system engages separate or combined computational machinery.

Conclusions

We have argued that the use of computational models is essential for the development of psycholinguistic theories of bilingual language comprehension (and indeed production). We explored localist and distributed networks, examining the bilingual data that each model has been applied to, and the types of bilingual phenomena that each model has the potential to illuminate. Nevertheless, the modeling of bilingual language processing is at an early stage. The localist approach is perhaps more advanced than the distributed approach, and at this stage of theory development, perhaps a more useful research tool. On the other hand, distributed models may have the greater potential, given the range of phenomena that have been explored within the unilingual domain which have direct relevance to bilingual language processing. Currently it is a time for researchers to use different modeling tools to investigate different issues within bilingualism. Eventually, however, these models must come together to generate a (semantically transparent) model that explains how two languages can be acquired, maintained, and controlled in a dynamically changing cognitive system.
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Footnotes

Footnote 1: Interestingly, Li and Farkaš (2002) have claimed that their model combines the advantages of both localist and distributed models, in that it is trainable but also semantically interpretable. Clearly a model that can address developmental phenomena as well as being easily comprehensible is advantageous. However, the semantic transparency of their model is achieved at some expense to psychological plausibility. SOMBIP forces not only its words but also its meanings to be represented over only two dimensions each. It is not clear that this is plausible on psychological grounds, or indeed on neural grounds – the inspiration for cortical maps comes from sensory cortex. Whether the representations of meaning or word forms are driven by the same organizational principles is an open question. However, the depiction of all possible word meanings as X-Y co-ordinates on a 2-D would seem perhaps too great a simplification for the representation of semantics.

Figure captions

Figure 1. The Bilingual Interactive Activation (BIA) model. Excitatory connections are indicated by arrows (with arrow heads pointing in the direction of activation spreading), inhibitory connections by ball-headed lines. Note that although two pools of word units are depicted, one for each language, during processing all words compete with all other words via inhibitory lateral connections, representing an integrated lexicon.
Figure 2. The Bilingual Model of Lexical Access (BIMOLA) (Léwy & Grosjean, in prep.). A model of bilingual speech perception.

Figure 3. The Semantic Orthographic and PHonological Interactive Activation model (SOPHIA) (Van Heuven & Dijkstra, 2001; in prep.)

Figure 4. The Bilingual Single Network (BSN) model (Thomas, 1997a,b). Rectangles correspond to layers of simple processing units.

Figure 5. The structure of the internal representations learned by the BSN model, for balanced and unbalanced networks. Diagrams show the positions of the words in each artificial language on the two most salient dimensions of the 60-dimensional internal similarity space.

Figure 6. The Bilingual Simple Recurrent Network (BSRN) (French, 1998).

Figure 7. The Self-Organizing Connectionist Model of Bilingual Processing (SOMBIP) (Li & Farkaš, 2002).
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